

Photonic computing with Lithium Niobate integrated Photonics from Concepts to Products

Dr. Mathias Metsch

Q.ANT at a glance: key company figures

2018 founded

2 Business Units 2.300 sqm Workspace

> 100 Q.ANTies

Z1Nationalities

Publicly Funded Projects

>110
Patent Families

3World Premiers

7 Coffee Machines

The surge in data centre power consumption continues, mainly driven by sharply rising utilization

Moore's Law for CMOS is long gone.

The demand for compute power doubles every 3-4 months since AI usage on GPUs is rising

Moore's law
Dennard Scaling
Koomey's law
Amdahl's law

Memory wall
Communication bottleneck

Today's Computer ecosystem is self-limiting by three fundamental bottlenecks - A unique opportunity for photonic computing

Several bottlenecks are major obstacles

- Digital implementations are hitting scaling limits and hinder innovations in algorithms
- The energy demand of data centers will bring existing power infrastructure to its limits

A window of opportunity for alternative technologies opened

Limited semiconductor production capacity gives a handful companies oligopoly power

But don't bet against silicon or CMOS!

Addition yes, replacement no

- CMOS has evolved over the last years
 - Multi-die / chiplet approach
 - 2.5D packaging with stacked memory
- Even completely different materials are common where power is key
 - GaN & SiC in power electronics
- Photonics plays its role in communication and HPC

https://arxiv.org/pdf/2304.01433

Nvidia, https://www.youtube.com/watch?v=kS8r7UcexJU

1988: First optical transatlantic cable

2001: SFP standard for pluggable modules

2025: Co-packaged optics enables Al scale out

Photonic computing

Electronics vs Photonics

Carrier of information & energy
Propagation in
Typical geometry
Minimal structure size
Complexity

Main material
Nonlinearity
Typical wavelength

Typical chip size

Development state

Electronics

Electrons

Conductive tracks

Manhattan

Few tens of nm

Billions of units

Well sub mm² to cm²

Si by far

PN-junctions

Extremely mature and reaching peak maturity?

Photonics

Photons

Dielectric waveguides

Curvi-linear

Few hundreds of nm

Hundreds of units

Few mm² to cm²

Si, but more diverse

Gain and $\chi^{(2)}$ (and $\chi^{(3)}$)

1 to 1.5 um, mostly 1550nm

Maturing and developing

Photonic computing scales not just physically but also through higher density math and higher density transformations

Scaling lever

Variables

Example

1 Physical scaling

- Clock rate
- Modes
- Wavelength
- # of photonic chips

32 Modes x 1 GHz x 32 wavelengths x 8 chips = 262 TOPS

2 Arithmetical scaling

- Use of mathematical functions that are simple to implement in optics
- 1024 DFT = 3072 OPS
- DFT at 1 GHZ = 3 TOPS

3 Algorithmic scaling

- Use of algorithms that need less cycles to achieve the same detection rates
- Some transforms are better suited than others for predicting outcomes

Photonics is a great platform for computing

1 Distributed computing is native to photonics

Enabling an essential ingredient to any modern HPC

2 The native bandwidth of photonics is 1000 times higher than in electronics

Enabling massive frequency multiplexing

3 Complex operations are native to photonics

Enabling their direct and energy efficient computations in the analog domain

4 Data flow processing architecture can be implemented with light

Near-deterministic processing

Photonic chips for data processing can solve this conundrum, running at the speed of light

Digital Computing

Photonic Computing

- In CMOS, electrons are moving
- Switching uses electrical currents

- In photonics, photons are flowing
- Control uses electrical fields

How we make full use of the large optical bandwidth

- The large optical frequency bandwidth opens a new window of parallelism not available in the CMOS world frequency parallelism (or wavelength parallelism/WDM)
- Modulation with high frequency but in-sync with electronics
 - Regular computing CMOS work with up to 5 GHz
- Implementing WDM
 - Parallel, independent processing
- Interaction in between light
 - Optical nonlinearities (multiplication in amplitude, addition in frequency)
 - Photodetection (summation in power)

11

What nonlinear $\chi^{(2)}$ optics can do

Interactions of photons with photons via matter

Second Harmonic Generation

$$E_{out} = E_{in} + E_{in}$$

Parametric down conversion

$$E_{out1} + E_{out2} = E_{in}$$

What is integrated photonics?

Lithium niobate is a great material for photonic compute

Transparent

- Large transparency window spanning visible and IR
- Refractive index around 2 – comparable to SiN

Nonlinear

$$\chi^{(2)}{f E}^2(t) +$$

- Very high χ⁽²⁾ nonlinearity
- Can be poled
- High $\chi^{(3)}$ nonlinearity

Electro-optic

- Very high electro-optic coefficient
- Used in the fastest modulators today

Known

- It has been around for a while
- Commercially availabe as wafers of different sizes
- Commercially available as thin film on insulator (LNOI/TFLN)

Pictures from: deltroniccrystalindustries.com, Wikipedia, ixblue.com

Q.ANT controls the entire value chain of our Native Processing Server (NPS)

In a "world-first", Q.ANT demonstrated the Native Processing Unit (NPU) at the end of 2024

NPU for accelerating matrix multiplication

Specifications

System: PCIe card, double slot

Throughput: 100 MOPS

Power consumption: 30 W

Host interface: PCle Gen. 3 x8

Linux device driver

FPGA based control electronics

NPUs come as turn-key system in Q.ANT's Native Processing Server (NPS)

Specifications

- System: host system based on x86 19"
 4U rack mount
- At least one NPU; upgradeable to the latest versions
- Power consumption: 500 W
- Network Interface: 10 Gbit Ethernet
- Linux operating system

There is not just the one way to do photonic computing

Nearly all approaches are analog but there are substantial differences:

- Just communication
- Reservoir computing
- Spiking neural networks
- Pure-GEMM
- Hybrid

And most of these still rely on substantial electronic hardware:

- Input and output
- Memory
- Clocking
- Control routines and programming

https://arxiv.org/pdf/2501.07917

Image segmentation demonstrates the capabilities of the NPS

Image segmentation on NPU Gen. 1 (100 MOPS) using U-Net:

Image segmentation of a tumor in a brain MRI scan

- Using the 'U-Net' convolutional neural network architecture, with 5.4 × 10¹⁰ MAC operations performed on Q.ANT NPU Gen. 1
- Error propagation of analog compute is not relevant
- Al based on photonic compute is feasible, with same performance at lower energy and less footprint

More accurate prediction of Navier-Stokes time evolution

Beyond technical issues there is the market

- There is a strong dominance in the GPU/accelerator market today
- Software stack and Open Source
 - Potential for integration of different solutions into one stack
 - Libaries enable integration without a full blown approach like CUDA

(Image: Julian Holzwarth / HLRS)

Outlook for the future of photonics computing

- Photonics does play a major supporting role for computing already
- Q.ANT works on making photonics one of the main actors for efficient computing
- We have first products aimed at R&D and early adopters
- We will release new hardware in the next year
- We are working hard to increase the depth and complexity of computing possible in photonics

GANT