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In conventional variational quantum eigensolvers (VQEs), trial states are prepared by applying > A t t d C I' b t'
series of parameterized gates to a reference state, with the gate parameters being varied to minimize u O m a e a I ra IO n
the energy of the target system. Recognizing that the gates are intermediates which are ultimately
compiled into a set of control pulses to be applied to each qubit in the lab, the recently proposed
ctrl-VQE algorithm takes the amplitudes, frequencies, and phases of the pulse as the variational .
parameters used to minimize the molecular energy. In this work, we explore how all three degrees - G
of freedom interrelate with one another. To this end, we consider several distinct strategies to > Pareto Optl mal ate
parameterize the control pulses, assessing each one through numerical simulations of a transmon- .
like device. For each parameterization, we contrast the pulse duration required to prepare a good PU |Se Im plementatlon
ansatz, and the difficulty to optimize that ansatz from a well-defined initial state. We deduce several
guiding heuristics to implement practical ctrl-VQE in hardware, which we anticipate will generalize
for generic device architectures.

> Pulse-level VQEs

I. INTRODUCTION Three of the authors previously proposed the algorithm
ctrl-VQE [15, 16], which takes the idea of a hardware-
Variational quantum eigensolvers (VQESs) are among efficient a:nsatz to the extreme b}f parameterizing tche ac- . .

the most promising candidates for achieving useful com- tual physical COI}U”OI pulse§ USFd in the lab, bypassing the > Dyn ami Cal D ecou pl N g
putations in chemistry on near-term quantum comput- use of gates entirely. Designing the ansatz at the pulse
ers [1-6]. At their core, they are predict-and-test meth- level allows drastically shorter evolution times, even ap-
ods, where a quantum state, determined by a set of clas- proaching the quantum §peed limits. imposed by the hard- .
sical parameters as specified by an ansatz, is prepared on ~ Ware [17], and hypothetically enabling the VQE to study > M a rket| N g
the quantum computer, and its energy measured. Then a much larger or more complex systems. The methods and
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Source: WMI; Modality: Superconducting

MQV's Munich Quantum Software
Stack MQSS

The MQSS is the output of the Q-DESSI' (K5)

consortium of the Munich Quantum Valley
(MQV)

Our mission is to develop a:

» comprehensive,
» extendable, and
» flexible open-source

software for full-stack, quantum computing
systems.

'Quantum Development Environment, System Software & Integration
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MQSS Solutions
= Munich Quantum Portal
MQP

» Quantum Programming Interface
QPI

» Quantum Resource Manager
QRM

= Quantum Device Management Interface
QDMI

Source: planqc; Modality: Neutral Atoms System
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MQSS Services

= Noiseless Simulation

= Noise-based Simulation

» JIT Compilation and Optimization
» Telemetry-based Error Mitigation

= Automated Calibration

= Pulse-level Control

Source: AQT; Modality: lon-trap System
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Integrating Pulse-level Support

Software Stack
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A True Full Software Stack
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Munich Quantum Software Stack - MQSS
Path to MQSS-pulse

C-based Quantum Programming Interface
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Abstract—With the increasing maturity and accessibility of
quantum their and use in
the high-| ing (HPC) as a novel
accelerator triggers a crucial new area of research. To address
the demands for efficient and tightly coupled programming,
we present the Quantum Programming Interface (QPI), a C-
based library enabling the development of quantum tasks and
submission to quantum resources.

1. INTRODUCTION

High-performance computing (HPC) systems offer en-
hanced performance and less resource consumption by in-
tegrating various devices and architectures. On the other
hand, quantum computers (QC), with their unique computing
paradigm, hold promises of being accelerators and stand-alone
computational approaches, with their inherent capability of
tackling problems that would require exponential resources to
solve for their classical counterparts. However, it is essential to

that both i i can )l
each other; QCs enable solving or accelerating intrinsic prob-
lems in quantum computing, while HPC systems pave the way
for more optimal computing by handling operational control

tum resources for real-world applications. Furthermore, given
the possibility of multiple quantum backends employing var-
ious underlying technologies and features integrated into the
software stack, it is crucial to abstract the compilation layer
from both the application layer and the architecture. This is

achieved by the ion in a so-

called intermediate representation (IR), thereby adding support

for various hard ions and ing common

i such as scheduling and further
optimizations.

To tackle these challenges holistically, we present the Quan-
tum Programming Interface (QPI), a lightweight library to
embed quantum circuits in HPC applications. QPI enables the

ion of HPC applications by allowing to
describe their quantum or classical-quantum programs within
a common programming interface while efficiently leveraging
quantum resources, regardless of the quantum device respon-
sible for executing the job thereafter.

QPLis a C-programming interface that allows users to create
quantum circuits at a high level of abstraction, which are

of QCs, the compilation of quantum circuits, and supp
the parameter optimization of quantum circuits in variational
quantum algorithms.

Combining the radically different approaches of HPC sys-
tems with quantum computers presents a significant chal-
lenge at the software level. Beyond establishing a physical
connection, the software stack development enables seamless
user interaction between the two systems. Creating a hy-
brid application requires quantum programming tools (QPTs),
which are designed to specify the interaction between the
quantum computer and the HPC system. QPTs need to be
abstracted from the quantum component at the application
layer. M , QPTs must be ible with existing HPC
tools and higher-level i to create a
better user experience and facilitate maintenance.

Quantum circuit compilation is another crucial step within

then into an LLVM. iant IR, allowing seamless
communication and execution on various quantum computers
and simulators.

Our main contributions are the following:

« We elimi ication and i depend
from quantum circuits and HPC systems, simplifying the
creation of quantum circuits

We provide a holistic approach for hybrid quantum-
classical applications

‘We abstract the underlying technology of the target QPUs
and expose them as local accelerators

Overall, we offer a novel solution tailored for HPC
ecosystems for 1) describing quantum circuits through
an interface familiar to most researchers, 2) parsing
the quantum algorithm’s components into an LLVM-

the quantum integration software. It high-level IR, and 3) ing it to the quantum com-
quantum algorithms into hard pecific impl i piler for its subsequent execution by the targeted quantum
circuit i i reducing errors, and accelerator

ensuring compatibility with diverse quantum hardware tech-
nologies, enabling seamless and efficient utilization of quan-

These contributions are further described in section III.

979-8-3315-4137-8/24/$31.00 ©2024 IEEE 286
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Abstract—High P C ing-Quantum C to the circuit !hrough the apphcauon of custom
(l'lll;CQt ) epration l’l‘zﬂ“s a romisi yet o m“P‘ LLVM passes. ion schemes
portunity, particularly in the area of quantum circuit compilation
and optimization, requiring further advancements in the field of akm to th.e classical w.orld such as nerauvelly ipplymg LLVM
Quantum Computing (QC). To address this, we introd passes, ! classical into the
Munich Quantum Compiler, a key component of the Munich ~quantum domain, as we will elaborate.

Quantum Software Stack (MQSS). This compiler employs a The chall i with finding Pareto-optimal opti-

heuristic-based approach to select a Pareto-optimal subset of
optimizations in the form of LLVM passes for quantum circuits
described in an LLVM i
(R).

Index Terms—Quantum Computing, Multi-objective Opti-
mization, Quantum Compilation, LLVM, QIR, MOEA, Genetic
Algorithm, NSGA-II

1. INTRODUCTION

In recent years, Quantum Compulmg (QC) has demon-
strated significant potential for achieving 1 per-

mization subsets [13] and the sequence in which to apply them
[14], also known as phase ordering, have been extensively
studied in the classical compilation field. These are well-
known NP-Hard problems [15]. The proposed solutions range
from utilizing Genetic Algorithms (GAs) [16]-[18], for years
deemed as state-of-the-art, through more modern approaches
based on, for example, Machine Learning (ML) [19] or
Reinforcement Learning (RL) [15], [20], [21].

Similarly, ML and RL are usually utilized regarding quan-

formance improvements over classical algorithms for certain
classes of computational problems [1]-[5]. In order to en-
able wider growth and development of the quantum poten-
tial, efforts towards High Performance Computing-Quantum
Computing (HPCQC) integration have been initiated [6], [7].

tum ilation [22]-{25], mainly due to their efficient ex-
ecution times. However, most of the proposed approaches
in the literature focus on optimizing a singular objective,
usually a complex figure of merit consisting of a weighted
sum of multiple different objectives, such as depth or number
of games Althuugh the importance of some quantum metrics

their goal of providing seamless ion be-
tween classical and quantum parts of the system would allow
to reach a new territory of research, mainly in the form of
hybrid algorithms.

However, to be able to achieve a hybrid software stack, it is
necessary to design highly sophisticated compilers capable of
both: 1) providing effective optimizations for quantum circuits,
such as reducing their size to allow execution before significant
coherence degradation, and 2) adapting the quantum circuits
to the unique capabilities and limitations of the available quan-
tum accelerators. Furthermore, a quantum compiler should
be able to support the common software stack for classical
and quantum applications. For that reason, we decided to
utilize Quantum Intermediate Representation (QIR) [8], an
LLVM. i i ion (IR) supporting
interleaving quantum and classical instructions within a single

is the of effective quantum
performance metrics remains an active area of research [26].
To provide a change of metrics in a figure of merit in model-
based compilers, each time a tedious and time-consuming
model retraining is necessary.

The novelty of the quantum optimization approach proposed
in the Munich Quantum Compiler lies in providing a multi-
objective opumuauon through the utilization of a GA, more

ificall d d sorting-based Multi-Objective
Evolutionary Algonl.hm (MOEA) called Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II). This approach yields a
set of solution candidates belonging to the Pareto frontier, none
of which is fully dominated by any other solution found. While
GAs have proven to be highly effective in the classical domain,
to the best of our knowledge, they have not yet been applied
to the quantum version of this problem.

Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

DLR

25



Munich Quantum Software Stack - MQSS

C-based Quantum Programming Interface

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

QPI: A Programming Interface For Quantum
Computers

LLVM/IR-based compilation

Erciiment Kaya*]
*Leibniz Supe

Abstract—With th|
quantum computers|
the high-performan}
accelerator triggers
the demands for ef
we present the Qual
based library enablis
submission to quant

High-performancd
hanced performancq
tegrating various d|
hand, quantum com
paradigm, hold pron]
computational appre
tackling problems th
solve for their classi
recognize that both
each other; QCs eng
lems in quantum corf
for more optimal ct
of QCs, the compil:
the parameter optim
quantum algorithms

Combining the raf
tems with quantumy
lenge at the softwal
connection, the soft]
user interaction be
brid application req
which are designed
quantum computer
abstracted from the]
layer. Moreover, QP
tools and higher-lej
better user experien(

Quantum circuit
the quantum integr]
quantum algorithms|
optimizing circuit e
ensuring compatibil]
nologies, enabling s

979-8-3315-4137-8/24/$3
DOI 10.1109/QCE60285.3

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

2024 IEEE

Achieving Pareto-Optimality in Quantum Circuit
Compilation via a Multi-Objective Heuristic
Optimization Approach

C: on Quantum Cq ing and Engineering (QCE)

Aleksa
*Leibniz Supercomputir]

Abstract—High Performan(
(HPCQC) integration presen|
portunity, particularly in the
and optimization, requiring
Quantum Computing (QC).
Munich Quantum Compiler)
Quantum Software Stack (]
heuristic-based approach to
optimizations in the form of
described in an LLVM-com
(R).

Index Terms—Quantum
mization, Quantum Compilal
Algorithm, NSGA-IT

I. INTy

In recent years, Quantu:
strated significant potential
formance improvements ov
classes of computational p|
able wider growth and de
tial, efforts towards High §
Computing (HPCQC) integy
Reaching their goal of pre
tween classical and quantury
to reach a new territory of]
hybrid algorithms.

However, to be able to ac]
necessary to design highly
both: 1) providing effective
such as reducing their size t
coherence degradation, and
to the unique capabllmes any

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

QDMI - Quantum Device Management Interface:
Hardware-Software Interface for the Munich Quantum Software Stack

Robert Wille*!, Ludwig Schmid*, Yannick Stade*, Jorge Echavarria!, Martin Schulz*$, Laura Schulz!, Lukas Burgholzer*
*Chair for Design Automation, Technical University of Munich, Munich, Germany

tSoftware Comp Center F

#Leibniz Supercomputing

g GmbH, Hagent Austria
Centre, Garching, Germany

8Chair of Computer Architecture and Parallel Systems, Technical University of Munich, Munich, Germany
{robert.wille, ludwig.s.schmid, yannick.stade, martin.w.j.schulz, lukas.burgholzer} @tum.de
{laura.schulz, jorge.echavarria} @lrz.de

Abstract—Quantum ing is a isi hnol that
requires a sophisticated software stack to connect end users to
the wide range of possible quantum backends. However, current
software tools are usually hard-coded for single platforms and
lack a dynamic interface that can automaueally retrleve nnd
adapt to ing physical

Different quantum devices have different architectures, gate
sets, error rates, topology, calibration, and noise models or
provide fundamentally different operational capabilities such
as qubit shuttling [7], [8].

Different quantum algorithms have different requirements,

different platforms. With new plxtl rms

introduced and their perl‘nrmance changing on a dajly basis,
this constitutes a serious limitation. In this paper, we show-
case a concept and a prototypical realization of an interface,

bjecti and trade-offs [9]-[12]. In addition, these factors
can vary over time and depend on the environmental conditions
as well as the state of the device. This needs a way to enable

called the Quannm Device Management Interface (QDMI), that  efficient ion and optimization between
addresses this problem by expllcltly connecting the mﬁware ilers and devices that and reflects
and between their

interests. QDMI allows hardware platforms to provide their
physical characteristics in a standardized way, and software
tools to query that data to guide the compilation process
accordingly. This enables software tools to automatically adapt
to different platforms and to optimize the compilation process
for the specific hardware constraints. QDMI is a central part of
the Munich Quantum Software Stack (MQSS)—a sophisticated
software stack to connect end users to the wide range of possible
quantum backends. QDMI is publicly available as open source
at i ich-Quant Stack/QD!

ML

1. MOTIVATION

the knowl dge base of the people developing said software
and hardware. After all, quantum computers are likely to
be used as accelerators for classical computing platforms
and, hence, need to be tightly integrated into the rest of the
ecosystem and workflows [13]. Such a communication and
optimization process would require a common language and
a standardized interface that both parties can understand and
use. This would allow the people developing software tools
to query relevant information and feedback about devices,
and the people developing the hardware to provide guidance,
express limitations, and offer suggestions in a standardized

and d machi form.
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ucially depends on the quahty of the
quantum software stack used to realize potential applications.
Such a stack consists of various layers of software tools
and must be able to connect the end users (usually domain
experts from the respective application areas such as material
simulation, machine learning or optimization) with the wide

In this paper, we showcase the Quantum Device Man-
agement Interface (QDMI) as a central part of the Munich
Quantum Software Stack (MQSS) that addresses this problem.
The MQSS is a project of the Munich Quantum Valley (MQV)
initiative and is jointly developed by the Leibniz Supercom-
puting Centre (LRZ) and the Chair for Design Automa-
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Abstract—Quantum computers are making their way into
High Performance Computing (HPC) centers as next-generation
accelerators. Due to their physical implementation as mostly
large appliances in separate racks, their number in typical data
centers is significantly lower than the number of nodes offloading
work to them, unlike the case with GPU accelerators. As a
they form large-scale di i

that pose a number of integration challenges due to their
diverse implementation technologies and their need to be used
as a shared resource for optimal utilization. Running hybrid

P Ci uantum Ce (HPCQC)
applications in HPC environments, where the quantum portion
is offloaded to the quantum processing units (QPUs), requires 5

isti resource ies to optimize re- Fig. 1: A view into the Quantum Integration Centre (QIC)
:::r:: "h;li;fﬂ':'ho: ﬁn“ii g:rg“m-sgm ﬂ:rse ';Lpg{ (:;Ql;rse;en: at LRZ/Munich showing a superconducting system (left), an
Just-In-Time (JIT) compilation and execution software stack for  101-1t2P system (middle) and HPC racks covering the classic
quantum and hybrid quantum-HPC workloads - beneficial for ~ compute. The result is a strongly disaggregated infrastructure
i i i quantum into iti combing classical HPC clusters with large-scale accelerator
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'.he gap between high-performance computing (HPC) and quan-
tum computing (QC). A unified, extensible, and efficient com-
pilation framework becomes important as quantum devices
and applications smle This paper proposes the mmgrauon of

supporting high-level quantum program transformations and
hardware-specific optimizations [15]. LLVM/QIR is a low-
level instruction-based IR, which is tightly coupled with
LLVM’s backend and operates at a granularity that often
removes the program structure and the exposure of data de-

Multi-Level (MLIR) as pend [16, 17]. These potennal limitations can restrict the
representation into the MQSS to address the chall of impl ion of ad d opti i that benefit from
and hybrid cl. icati 1ot o . . .
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Munich Quantum Software Stack - MQSS

» Port
% Software abstraction representing any input or output component controlling qubits

* It allows a hardware vendor to provide relevant actuation knobs they wish to
expose to the user in order to manipulate and observe qubits?

3 While hiding the complexities of the device’s underlying technology

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m 31



Munich Quantum Software Stack - MQSS

> Waveform

* Time-dependent envelope that can be used to emit signals on an output port or receive
signals from an input port

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m
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Munich Quantum Software Stack - MQSS

> Frame

% A software abstraction that acts as*°:
» Clock within the quantum program with its time being incremented on each usage

= A stateful carrier signal defined by a frequency and phase

4 When transmitting signals to the qubit, a frame determines: a) time at which the waveform envelope is emitted, b) its carrier frequency,
and c) its phase offset

5When capturing signals from a qubit, at minimum a frame determines the time at which the signal is captured

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m m 33
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Summary
» Challenges » Abstractions
¢ User Interface s Frame
¢ Device Interface s Waveform
* Intermediate Representation s Port

* Exchange Format

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10



Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

Intermediate Representation Exchange Format
A A
r N\ 'd
User Interface Device Interface
Remote Access Quantum Resource Manager and > - QDMI Device
Compiler Infrastructure(QRM&CI) - - Superconducting
c
Mass Python 2 N > . QDMI Device
Adapter Q > h - Neutral Atoms
Interface 5
Eg: Qiskit, CUDAQ, & Quantum
Pennylane, .. Device g
Compiler M > R QDMI Device
< > < > anagement € > lon Tra
Scheduler Pass Runner P
Interface
x (QDMI)
C/C++ - ) 2 A 4
c
MQSS C/Cos % N < >
Adapter Interface ) - Passes FoMe%
a DB =
I X -
Eg: QPI, CUDAQ, .. A > QDMI Device
> ) Classical Simulator
AN J &
Y Y
Middle-end Back-end

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10
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User Interface

Current MQSS Adapters

Amazon
ﬂ Braket
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from braket.aws import AwsDevice
from braket.devices import Devices
from braket.ir.opengasm import Program
openpulse_script = """
OPENQASM 3.0:
cal {
bit[1] psb;
waveform my_waveform = gaussian(12.0ns, 3.0ns, 0.2, false);
play(Transmon_25_charge_tx, my_waveform);
psb[0] = capture_v@(Transmon_25_readout_rx);

}

program = Program(source=openpulse_script)

device = AwsDevice(Devices.Rigetti.Ankaa3)
task = device.run(program, shots=100)

cal {...}

 The cal (calibration) block is where you describe pulses and
measurements directly (rather than high-level gates)

* Anything inside here is interpreted as a pulse program
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v" OPENQASM 3.0 cal { ... } > OpenPulse (waveform)

"openpulse_version": "1.0",
"backend": "quantum_accelerator_v1",
"pulse_library": [

{

bit[1] psb; * "name": "my_waveform",
waveform my_waveform = gaussian(12.0ns, 3.0ns, 0.2, false); j "samples": [

[0.000, 0.0001,

play(Transmon_25_charge_tx, my_waveform);
psb[0] = capture_v@(Transmon_25_readout_rx);

[0.000, 0.000]

cal{...}

 The cal (calibration) block is where you describe pulses and
measurements directly (rather than high-level gates)

* Anything inside here is interpreted as a pulse program
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bit[1] psb;

waveform my_waveform = gaussian(12.0ns, 3.0ns, 0.2, false);
play(Transmon_25_charge_tx, my_waveform);

psb[0] = capture_v@(Transmon_25_readout_rx);

cal{...}

 The cal (calibration) block is where you describe pulses and

measurements directly (rather than high-level gates)

* Anything inside here is interpreted as a pulse program
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"frames": [
{
"name": "g25_tx_frame",
"frame": {
"port": "Transmon_25_charge_tx",
"frequency": 5.0e9,
"phase": 0.0
3
1,
{
"name": "g25_rx_frame",
"frame": {
"port": "Transmon_25_readout_rx",
"frequency": 6.5e9,
"phase": 0.0

. TUTI
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bit[1] psb;

waveform my_waveform = gaussian(12.0ns, 3.0ns, 0.2, false);
play(Transmon_25_charge_tx, my_waveform);

psb[0] = capture_v@(Transmon_25_readout_rx);

cal{...}

 The cal (calibration) block is where you describe pulses and

measurements directly (rather than high-level gates)

* Anything inside here is interpreted as a pulse program

v OPENQASM 3.0 cal { ... } > OpenPulse (port)

Munich Quantum
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"schedule": [
{
"name": "drive_qg25",
"tQ": 0,
"port": "Transmon_25_charge_tx",
"waveform": "my_waveform",

"frame": "g25_tx_frame"

"name": "acquire_g25",

"to": 120,

"duration": 240,

"port": "Transmon_25_readout_rx",
"frame": "g25_rx_frame",
"memory_slot": 0,

"mode": "vO"

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m

40



MQSS Pulse

Munich Quantum
Software Stack

from braket.pulse import ArbitraryWaveform, ConstantWaveform

cst_wfm = ConstantWaveform(length=1e-7, iq=0.1)
arb_wf = ArbitraryWaveform(amplitudes=np.linspace(0, 100))

gaussian_waveform = GaussianWaveform(le-7, 25e-9, 0.1)

pulse_sequence = (
PulseSequence()
.play(drive_frame, waveform)
.capture_v@(readout_frame)

start_length=12e-9
end_length=2e-7
lengths = np.arange(start_length, end_length, 12e-9)

tasks = [
device.run(pulse_sequence, shots=100, inputs={"length": length})
for length in lengths
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cst_wfm = ConstantWaveform(length=1e-7, iq=0.1)
arb_wf = ArbitraryWaveform(amplitudes=np.linspace(0, 100))
gaussian_waveform = GaussianWaveform(le-7, 25e-9, 0.1)

pulse_sequence = (

PulseSequence()

.play(drive_frame, waveform)
.capture_v@(readout_frame)
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User Interface — MQSS Quantum Programming Interface (QPl) Adapter Mrich Qyantum

#include <qpi.h>

int main(){
do{
void* results = malloc(size);
pulse_vge_quantum_kernel (&results, nshots, &
<—>parameters);
parameters = calculate_new_parameters (&results,
< parameters)
Ywhile( stop_condition == false );
return 0;

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

void pulse_vqge_quantum_kernel (void *results, int nshots

<, Parameters *p) {

QCircuit circuit;

qCircuitBegin(&circuit)

QClassicalRegisters cr;

gInitClassicalRegisters(&cr, 2);

// we begin with X on both qubits

ax () ;

ax(1);

// define the waveforms

gWaveform(&waveform_1, p->amps_1);

gWaveform(&waveform_2, p->amps_2);

gWaveform(&waveform_3, p->amps_3);

// apply the waves

gPlayWaveform(gb1_drive_port, waveform_1);

gPlayWaveform(gb2_drive_port, waveform_2);

// do the frame changes

gFrameChange (gqb1_drive_port, freq_qbl, p->phase_qgb1
—);

gFrameChange (gb2_drive_port, freq_qb2, p->phase_qgb2
—);

// apply the entangling pulse

gPlayWaveform(gb1_gb2_coupler_port, waveform_3);

// measure

gMeasure (0, 0);

gMeasure (1, 1);

qCircuitEnd () ;

if (! gExecute(dev, circuit, nshots))
QuantumResult* results = gRead(circuit);

gqCircuitFree(circuit);

# TUTN & -
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Intermediate Representation — The Path to Pulse-level Control
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Intermediate Representation — The Path to Pulse-level Control

MQ

-

Quantum
L Algorithms )

4 n
o, =
Circuits
(. J
4 N\

Gate-Set =& ———
-—a—
Compilation #s—=—=

e N
Pulse-Level ,\n A,
Control
Level of > <
&
Abstraction Physical )
Hardware )
.

Front-end Middle-End Back-end

Runtime & Compilation Flow

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10




MQSS Pulse
Intermediate Representation — MLIR Dialects

» “Traditional” pulse compilation workflow:
1. Quantum operations are translated into pulse-level operations
2. Pulse-level operations are optimized and scheduled

3. Optimized and scheduled pulse-level operations are lowered to hardware primitives
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> |QM’s Quantum Engine Compiler ( ) supports the following MLIR dialects:
% OpenQASM3 IR (0g3)

% Quantum IR/dialect (quir)
v’ Consistent with 2

v’ Consistent with OpenPulse

» Seamless translation from gate-level quantum circuits into sequences of pulse operations on
frames using MLIR pulse calibrations that the compiler receives as input

2 Quantum Operations = Gates & Measurements
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Intermediate Representation — MLIR Dialects

IBM’s pulse

module {
pulse.def @waveform_1 { // Define waveforms
pulse.waveform amplitudes = %amplitudes_in : vector.vector<5
<—x1i32>
}
pulse.def @waveform_2 { ... }
pulse.def @waveform_3 { ... }

// Main pulse-level kernel

pulse.sequence @pulse_vge_quantum_kernel(

%drive@: !!pulse.mixed_frame, %drivel: !pulse.mixed_frame,
%coupler: !pulse.mixed_frame, %freq: f64,

%phase: f64) -> i1l

attributes { pulse.argPorts = ["g@-drive-port",
"q1-drive-port", "g@ql-coupler-port", "", ""1],

pulse.args =["q0-drive-frame", "ql-drive-frame",
"coupler-frame", "freq", "phase"]} {

// 2. Waveform constants

%wf1 = pulse.waveform.amplitudes @waveform_1
%wf2 = pulse.waveform.amplitudes @waveform_2
%wf3 = pulse.waveform.amplitudes @waveform_3

// 3. Abply single—qubit'pulses

pulse.play(%drive@, %wf1): (!pulse.mixed_frame, !pulse.waveform
—)

pulse.play(%drivel, %wf2): (!pulse.mixed_frame, !pulse.waveform
=)
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// 4. Frame changes

pulse.frame_change(%drive@, %freq, %phase) : (!pulse.
<—mixed_frame, f64, f64)

pulse.frame_change(%drivel, %freq, %phase) : (!pulse.
—mixed_frame, f64, f64)

// 5. Entangling pulse
pulse.play(%coupler, %wf3)
: (!pulse.mixed_frame, !pulse.waveform)

// 6. Measurement on qubit@

wwf_r = pulse.waveform.constant @readout_pulse

pulse.play (%readout@, %wf_r) : (!pulse.mixed_frame, !pulse.
<—waveform)

%m@ = pulse.capture (%capture@): (!pulse.mixed_frame) -> il
pulse.return %m@, %mi1 : i1, il
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The Structure of the QDMI

g A consumes, Session Query Job
®\ B implements * User Management » Device Properties » Job Configuration
the interface » Access Control + Site Properties * Job Submission
* Resource Management * Operation Properties * Result Retrieval

Clients O @ O ||

Driver

? ? 2
Devices f‘\ f‘\ /4.\
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MQSS Pulse

» Objects such as , , , , and are opaque pointers
» Pointers to a data structure that is not defined in the header file
hardware provider

* The actual implementation is only known to thegnﬁﬁ/ that defines the object

% They allow changing the internal representation of the object without breaking the
client code

% Opaque pointers effectively serve as type-safe IDs that are checked statically by the
compiler
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Opaque Pointers in QDMI

¢ QDMI_Site ]

typedef struct QDMI_Site_impl_d*x QDMI_Site

A handle for a site.

An opaque pointer to an implementation of the QDMI site concept. A site is a place that can potentially hold a qubit. In case of superconducting
qubits, sites can be used synonymously with qubits. In case of neutral atoms, sites represent individual traps that can confine atoms. Those
atoms are then used as qubits. To this end, sites are generalizations of qubits that denote locations where qubits can be placed on a device. Each

implementation of the QDMI Device Interface defines the actual implementation of the concept.

A simple example of an implementation is a struct that merely contains the site ID, which can be used to identify the site.

struct QDMI_Site_impl_d {
size_t id;

};
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Opaque Pointers in QDMI

A handle f

An opaque
qubits, sitt
atoms are

implement

A simple e

struct
size.

¢ QDMI_Site ]

typedef struct QDMI_Site_impl_d*x QDMI_Site

¢ QDMI_Operation

typedef struct QDMI_Operation_impl_dx QDMI_Operation

A handle for an operation.

An opaque pointer to an implementation of the QDMI operation concept. An operation generally represents any instruction that can be executed
on a device. This includes gates, measurements, classical control flow elements, movement of qubits, pulse-level instructions, etc. Each
implementation of the QDMI Device Interface defines the actual implementation of the concept.

A simple example of an implementation is a struct that merely contains the name of the operation, which can be used to identify the operation.

struct QDMI_Operation_impl_d {
std::string name;
I
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};

¢ QDMI_Site ]

typedef struct QDMI_Site_impl_d*x QDMI_Site

¢ QDMI_Operation

typedef struct QDMI_Operation_impl_dx QDMI_Operation

A handle f

An opaque
on a devic
implement

A simple €

struct
std:

¢ QDMI_Job

typedef struct QDMI_Job_impl_dx QDMI_Job

A handle for a client-side job.

An opaque pointer to a type defined by the driver that encapsulates all information about a job submitted to a device by a client.

Remarks
Implementations of the underlying type will want to store the device handle used to create the job in the job handle to be able to access the
device when needed.
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A handle f
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size.

};

¢ QDMI_Site ]

typedef struct QDMI_Site_impl_d*x QDMI_Site

¢ QDMI_Operation

typedef struct QDMI_Operation_impl_dx QDMI_Operation

A handle f

An opaque
on a devic
implement

A simple €

struct
std:

¢ QDMI_Job

typedef struct QDMI_Job_impl_dx QDMI_Job

A handle fi

An opaque

Remarl
Implem:
device\

¢ QDMI_Device_Job

typedef struct QDMI_Device_Job_impl_d* QDMI_Device_Job

A handle for a device job.

An opaque pointer to a type defined by the device that encapsulates all information about a job on a device.
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Opaque Pointers in QDMI

QDMI_PULSE_CHANNEL N
- ChannelType: e.g., DriveChannel, ReadoutChannel, ..
- Size_t: Id
- Constraints

QDMI_PULSE_PARAMETER
- Name
- Permission (Read-only, R/W)
- Range
> New potential candidates
QDMI_PULSE_SHAPE: Definition?
Predefined pulse shape:
- Name: “Gaussian”
- formula: str -> “ax”2+bx+c”
- parameters: List[QDMI_PULSE_PARAMETER]

QDMI_PULSE_GATE_IMPLEMENTATION
- Pulse program Intermediate Representation (e.g., OpenPulse)
- OR QDMI_PULSE_SHAPE with parameter values set Y,
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» QDMI relies on enumerations to define properties for , , : , and

» For each type of property, a corresponding enumeration is defined

» We do not define a separate function for each property - the value of a property is
retrieved by calling a single function with the property enumeration as an argument

» QDMI’'s enumerations allow adding new properties without breaking the interface

> If a new property is added, the corresponding enumeration can be added to the
interface without changing the existing functions
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Enums in QDMI

QDMI_DEVICE_PROPERTY_NAME
QDMI_DEVICE_PROPERTY_VERSION
QDMI_DEVICE_PROPERTY_STATUS
QDMI_DEVICE_PROPERTY_LIBRARYVERSION
QDMI_DEVICE_PROPERTY_QUBITSNUM

QDMI_DEVICE_PROPERTY_SITES

QDMI_DEVICE_PROPERTY_OPERATIONS

o

Y

charx (string) The name of the device.

charx (string) The version of the device.
QDMI_Device_Status The status of the device.

charx (string) The implemented version of QDMI.

size_t The number of qubits in the device.

QDMI_Sitex (QDMI_Site list) The sites of the device.

The returned QDMI_Site handles may be used to query site and operation
properties. The list need not be sorted based on the
QDMI_SITE_PROPERTY_ID.

QDMI_Operationkx (QDMI_Operation list) The operations supported by

the device.

The returned QDMI_Operation handles may be used to query operation

properties.
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Pulse-related Enums in QDMI

QDMI_DEVICE_PROPERTY_T )
- QDMI_DEVICE_PROPERTY_PULSE_SUPPORT

- 0: No pulse support

- 1: Site level (QDMI site)

- 2: Channel (readout, global, qubit drive, coupler drive, etc.)

- QDMI_DEVICE_PROPERTY_SUPPORTED_PULSE_SHAPE_TYPE

- ©@: Standard (well-known predefined shapes, e.g., Gaussian,
parameterized, etc. - defined by a formula definition of
parameters: see above)

- 1: Arbitrary pulse shapes (these are arbitrary-shaped pulses,
not defined in a standard way, e.g., a list of pulse
amplitudes and phases; see above)

- QDMI_DEVICE_PROPERTY_AVAILABLE_PULSE_SHAPES

- List(QDMI_PULSE_SHAPE, List(QDMI_SITE or QDMI_CHANNEL)) and
the corresponding channel (e.g., drive channel can have
Gaussian, readout does not support Gaussian)

QDMI_PROGRAM_FORMAT_T
- QDMI_PROGRAM_FORMAT OPENPULSE

tum
Software Stack

> Non-exhaustive list’

- QDMI_PROGRAM_FORMAT_QIRPULSE _J

' Property types not mentioned: a) Pulse channel properties, b) Pulse operation properties, and c) Site properties.
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Routines in QDMI

int QDMI_device_query_device_property ( QDMI_Device device,

QDMI_Device_Property prop,

size t size,
void * value,
size_t * size_ret )

Query a device property.

Parameters
[in] device The device to query. Must not be NULL .
[in] prop The property to query. Must be one of the values specified for QDMI_Device_Property.

[in] size The size of the memory pointed to by value in bytes. Must be greater or equal to the size of the return type specified
for prop , except when value is NULL , in which case it is ignored.

[out] value A pointer to the memory location where the value of the property will be stored. If thisis NULL , it is ignored.
[out] size_ret The actual size of the data being queried in bytes. If thisis NULL , it is ignored.

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m m 63



MQSS Pulse
Device Interface — Quantum Device Management Interface (QDMI)

Pulse-related Routines in QDMI

int QDMI_device_query_device_property ( QDMI_Device device,

QDMI_Device_Property prop,

size t size,
void * value,
size_t * size_ret )
Il First call to the function to get the size of memory required for all the sites // Second call to the function to get the QDMI_Sites

size_t size_ret;

void* value = malloc(size);
QDMI_device_query_device_property(

QDMI_device_query_device_property(

device, device,

QDMI_DEVICE_PROPERTY_SITES, /* QDMI enum value */ QDMI_DEVICE_PROPERTY_SITES, /* QDMI enum value */
NULL, size,

NULL, value,

&size ret NULL
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Munich Quantum
Software Stack

'+ Pulse-Level Support #1711

© Open

> https://tiny.badw.de/gSkYAK

6 mnfarooqi opened on Jun 5 - edited by mnfarooqi Edits v | Collaborator

What's the problem this feature will solve?

This issue focuses on extending the QDMI to include pulse level support, as discussed offline.

Exposing the pulse-level support will open up a range of new opportunities, such as calibration and enabling a pulse interface
for advanced users. It will also enable the development of software that can optimise user programs at a lower level of
abstraction.

Based on some preliminary discussions, the issue will be divided into the following sub-issues to facilitate subsequent
discussions and PRs.

Open questions:

Do the supported pulse shapes on a device change from one site/channel to another, or are they global to the device?
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» The LRZ as a member of the steering committee of the QIR Alliance will lead a workstream for
creating QIR-Pulse

% We suggest creating Pulse Profile and modify the output schemas accordingly

“ The QDMI specification will adopt QIR-Pulse as the default pulse exchange format but it will
also support OpenPulse and IQM-Pulse
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; ModuleID = 'my_pulse'

%Qubit = type opaque
%Port = type opaque
%Waveform = type opaque
%Frame = type opaque

define void @my_pulse(float* %amps, float %freq, float %phase) #0
—{
call void @__quantum__pulse__waveform__body(%Wave*x %waveformo,
—floatx %amps)
call void @__quantum__pulse__waveform_play__body(%Port* %porte,

Prototypical extension —#Havex waveformo)
. . call void @__quantum__pulse__frame_change__body(%Port*x port@d, %
to the (kR specification >freq, %phase)
. call void @__quantum__pulse__delay__body(%Port* portd, 1024)
EEF]Eik)|Ir\g) F)l]lf;f}-lf}\/f}l call void @__quantum__qis__mz__body(%Qubit* inttoptr (i64 @ to %
<—Qubitx), %Resultx inttoptr (i64 @ to %Resultx)) #1
E;LJF)F)()rt call void @__quantum__qis__mz__body(%Qubit* inttoptr (i64 1 to %
<—>Qubitx), %Resultx inttoptr (i64 1 to %Resultx)) #1
ret void
}
declare %Waveformx @__quantum__pulse__waveform__body(float, float
%)
declare void @__quantum__pulse__waveform_play__body(%Port*, %
—Waveformx)
declare %Framex @__quantum__pulse__frame_change__body(%Portx,
<—double)

declare void @__quantum__pulse__delay__body(%Framex, int)

non

attributes #0 = { "entry_point" "output_labeling_schema
<>qir_profiles"="pulse" "required_num_ports"="1" }
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Final Thoughts

» Goal: Remove obstacles to pulse-level quantum control in HPCQC integration with the MQSS

» Pulse abstractions: Ports, frames, and waveforms supported at front-end, middle-end, and back-
end of a heterogeneous HPCQC software stack similar to MQSS

» Challenges: User interface, device interface, intermediate representation, and exchange formats
require pulse abstractions support

» Compatibility: Native pulse representation across the stack preserving HPC
scheduling/execution models

» Impact: Enables pulse-aware hybrid workloads (calibration, custom waveforms) and new
guantum-accelerated algorithms for near-term hardware
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