Leibniz Supercomputing Centre

of the Bavarian Academy of Sciences and Humanities

Tackling the Challenges of Adding Pulse-level Support
to a Heterogeneous HPCQC Software Stack

Case Study: The Munich Quantum Software Stack - MQSS

Jorge Echavarria

2025.09.10

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich Quantum Software Stack - MQSS
What is a Pulse?

1

T

Waveform + Carrier frequency = Signal

|
—

~ \

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich Quantum Software Stack - MQSS

Munich Quantum
Software Stack

Parameterization and optimizability of pulse-level VQEs >

Extended Supported

Kyle M. Sherbert,2 3 Hisham Amer,%3 Sophia E. Economou,?3 Edwin Barnes,? 3 and Nicholas J. Mayhall'»3*
Gate Sets

! Department of Chemistry, Virginia Tech, Blacksburg, VA 24061
2Department of Physics, Virginia Tech, Blacksburg, VA 24061
3 Virginia Tech Center for Quantum Information Science and Engineering, Blacksburg, VA 24061, USA

In conventional variational quantum eigensolvers (VQEs), trial states are prepared by applying > A t t d C I' b t'
series of parameterized gates to a reference state, with the gate parameters being varied to minimize u O m a e a I ra IO n
the energy of the target system. Recognizing that the gates are intermediates which are ultimately
compiled into a set of control pulses to be applied to each qubit in the lab, the recently proposed
ctrl-VQE algorithm takes the amplitudes, frequencies, and phases of the pulse as the variational .
parameters used to minimize the molecular energy. In this work, we explore how all three degrees - G
of freedom interrelate with one another. To this end, we consider several distinct strategies to > Pareto Optl mal ate
parameterize the control pulses, assessing each one through numerical simulations of a transmon- .
like device. For each parameterization, we contrast the pulse duration required to prepare a good PU |Se Im plementatlon
ansatz, and the difficulty to optimize that ansatz from a well-defined initial state. We deduce several
guiding heuristics to implement practical ctrl-VQE in hardware, which we anticipate will generalize
for generic device architectures.

> Pulse-level VQEs

I. INTRODUCTION Three of the authors previously proposed the algorithm
ctrl-VQE [15, 16], which takes the idea of a hardware-
Variational quantum eigensolvers (VQESs) are among efficient a:nsatz to the extreme b}f parameterizing tche ac- . .

the most promising candidates for achieving useful com- tual physical COI}U”OI pulse§ USFd in the lab, bypassing the > Dyn ami Cal D ecou pl N g
putations in chemistry on near-term quantum comput- use of gates entirely. Designing the ansatz at the pulse
ers [1-6]. At their core, they are predict-and-test meth- level allows drastically shorter evolution times, even ap-
ods, where a quantum state, determined by a set of clas- proaching the quantum §peed limits. imposed by the hard- .
sical parameters as specified by an ansatz, is prepared on ~ Ware [17], and hypothetically enabling the VQE to study > M a rket| N g
the quantum computer, and its energy measured. Then a much larger or more complex systems. The methods and

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m

Source: WMI; Modality: Superconducting

MQV's Munich Quantum Software
Stack MQSS

The MQSS is the output of the Q-DESSI' (K5)

consortium of the Munich Quantum Valley
(MQV)

Our mission is to develop a:

» comprehensive,
» extendable, and
» flexible open-source

software for full-stack, quantum computing
systems.

'Quantum Development Environment, System Software & Integration

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQSS Solutions
= Munich Quantum Portal
MQP

» Quantum Programming Interface
QPI

» Quantum Resource Manager
QRM

= Quantum Device Management Interface
QDMI

Source: planqc; Modality: Neutral Atoms System

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQSS Services

= Noiseless Simulation

= Noise-based Simulation

» JIT Compilation and Optimization
» Telemetry-based Error Mitigation

= Automated Calibration

= Pulse-level Control

Source: AQT; Modality: lon-trap System

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich Quantum Software Stack - MQSS
Integrating Pulse-level Support

Software Stack

MQSS

SEgeas

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich Quantum Software Stack - MQSS Mass
Integrating Pulse-level Support D P

Software Stack

MQV Aplications K7 Applications Non MQV Applications & Us...

Higher Abstraction...

Interfaces and...

Bl oo
== :

Error correctio...

=

nﬂ esls - Breakln...

Technology-specific

" I

[t

<

—

[itg o

Intermediate R...

il
THTT

HE]

Circuit Optimization

it

LR
i

HMH-H"N

i |

i

1-

i

= iz
o= Mappmg / Qubit Ro...

.?"ﬁ
lli

Hardware-Level Compllation, Calibr...

v
0%.
5
=2
tilif;'l

(i II
(i

=
=
=8

.=
l

(i |

(o g

[l

Hardware-agnostic

1

Hardware-specific

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich Quantum Software Stack - MQSS CAM MQSS

Integrating Pulse-level Support e
pp FEEEEE
. MQV Aplications K7 Applications Non MQV Applications & Us...

Interfaces and...

L7

.. . o

w2
Oniine Optimization

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich Quantum Software Stack - MQSS CAM MQSS

Integrating Pulse-level Support e
pp FEEEEE
. MQV Aplications K7 Applications Non MQV Applications & Us...

Interfaces and...

mz
Oniine Optimization

S | |

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich Quantum Software Stack - MQSS
Integrating Pulse-level Support

MQV Aplications K7 Applications Non MQV Applications & Us...

Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

Interfaces and...

. o

0 |

IMLS:

Offiine Optimization
High-level language
s “ Bowa % sanit
Offine ————— compilation flag ———> i
experts o7 ilewds > checks
e Y
M3 % v v
Cassical Runtime

Translation Exchange Pulse
e e e e e e B FOTMAT

Execution of ' : '
clagsical code ['==o "~ Compilation Gates IR E
""""" =8 v Vv '
Platform Independent .
Circuit optimisation H
Ontne Opsirizasn :
[! :
Compilation tes IR H
N NI = T [R I i S S S DL S e e 7\ AR B R ;
- T e R Tl Tt Ryl el .
S ———— v | p—e— e e = Vendor boundary 1 Tt

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich
Quantum
Valley

Munich Quantum Software Stack - MQSS
Integrating Pulse-level Support

1 SEgEsE

. MQV Aplications K7 Applications Non MQV Applications & Us...

MQSS

Munich Quantum
Software Stack

Interfaces and...

el
i

B |88
— Program Analysis
s
#fine Optimization
High-level language
ws s * sanit
n
Offine. _ comPilation Flag —_— Yy
checks
[CessEs > ;
Luneranarawme i o L
Ve
Gassical Runcme
SECONDS
TO»
Lz e o > - - D D D S D S D D D W = ..
Onine Oztmzston \‘
HPC User-submitted hybrid job Schedule a Schedule a Scl\?dule a :
ccheduler | Hybridness” type must be job job Job -
recognized '
1. Arbitrary Classical+Quantum I 4\ l Ir 1
P SR T 1

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Full Quantum Software Stack CAM MQSS
Problem e

Advanced

Intermediate
amD @ ~ m types of users n available devices <

Basic

aD

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Full Quantum Software Stack i MQSS
StatUS QUO ey S

:Va.m;d Q) =) Software Stack 1- system 1

Intermediate

amD =) Software Stack 2 - system 1
Basic

acD @) Software Stack /7 - system 1

dvanced
A... @ =) Software Stack 1- system 2
Intermediate
dampD =) Software Stack 2 - system 2
Basic
acD @ =) Software Stack /7 - system 2

amD Q) =) Software Stack 1- system /7

Intermediate

amD =) Software Stack 2 - system #
Basic

acD @ =) Software Stack /7 - system #

lon Traps

"“Superconducting

(]
&
0
i
7
0
=
b
=)
7]
pd

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Full Quantum Software Stack AW Mass
Status Quo ey S

Advanced
amp @ —

s © &= F“ ll Software Stack 1

«p @ &=

Advanced
anmbp @ —

an> @ &= F“ llSﬂﬂWﬂl’ﬂ Stack 2

«p @ &=

Advanced
anmp @ —

Intermediate
s © &= F“ I.I.Soﬂware Stack 7

«p @ =

"“Superconducting lon Traps

Neutral Atems

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich Quantum Software Stack - MQSS Al MOSS
A True Full Software Stack Yarich Quantn

- MQSS

(Munich Quantum
Software Stack

Advanced
amp @ ' '

Intermediate
amD)

‘ Superconducting

MQSS Client

5 @ =

Quantum Device Management Interface

Neutral Atems

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich Quantum Software Stack - MQSS
A True Full Software Stack

Python
MQSS
Adapter

Eg: Qiskit, CUDAQ,
Pennylane, ..

Intermediate Representation

User Interface

Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

Exchange Format

Device Interface

C/C++
MQSS
Adapter

L Eg: QPI, CUDAQ, ..

A

A

MQSS Client Remote Access Quantum Resource Manager and P QDMI Device
Compiler Infrastructure(QRM&.CI) - Superconducting
- Dashboard >
C
] € > i
Python J 5 L R R . B R P QDMI Device
Interface > GI < > emote < —> Neutral Atoms
bl Quantum
Compiler Device QDMI Device
«—> P —>| Management [€ > lon Tra
Scheduler Pass Runner Interf P
HPC Access ntertace
x (QDMI)
E 2 2
R C/C++ J 5l R HPC B R < >
Interface O | Daemon | g Passes FoMaC
o DB lib
I = ,f.
> B R QDM Device
> - g Classical Simulator
Front-end Middle-end Back-end

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

7 TUTI & -

Munich Quantum Software Stack - MQSS
Challenges Identified

Intermediate Representation

User Interface

MQSS Client Remote Access

Dashboard [«

Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

Exchange Format

Device Interface

Quantum Resource Manager and
Compiler Infrastructure(QRM&.CI)

Python

Y

QDMI Device
Superconducting

A

IS
MQSS 9 < > QDMI Device
Adapter Python > ¢ Remote € —> < Neutral Atoms
Interface & .
1 Eg: Qiskit, CUDAQ, E Quantum
[rennyiane, . Comiler rviEs QDMI Device
< P | Management €«—> lon Tra
| Scheduler Pass Runner Interf P
] HPC Access ntertace
A (QDMI)
C/C++ -
e £ 2 ¥
< 5 C/C J 5l R HPC) R —>
Adapter - "I Interface O | "I Daemon - Passes FoMaC
o8 DB lib.
K
H| EorapLcupAq,. ’ [} > QDMI Device
> - i Classical Simulator
Front-end Middle-end Back-end

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

TUT & -

Munich Quantum Software Stack - MQSS
Challenges Identified

Intermediate Representation

User Interface

K—J%

MQSS Client

Quantum Resource Manager and
Compiler Infrastructure(QRM&CI)

Remote Access

Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

Exchange Format
A

-
Device Interface

K—H

QDMI Device
Superconducting

A

Python - Dashboard
C
MQSS 9 < > QDMI Device
Adapter Python > Y Remote < Neutral Atoms
Interface 5
Eg: Qiskit, CUDAQ, E Quantum
1 Pennylane, ... Device QDMI Device
«—> Compiler <«—>| Management «—> lon Tra
| Scheduler Pass Runner Interf P
] HPC Access ntertace
: . (QDMI)
C/C++ o
MQSS 3 b =
. C/C++ J 5 le R HPC B R < >
Adapter < Interface O | Daemon - - Passes FoMaC
4 bB lib.
H| EorapLcupAq,. 1 A > QDM Device
> - i Classical Simulator
G J G J G
' g e
Front-end Middle-end Back-end

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

72 TUN & -

Munich Quantum Software Stack - MQSS

Challenges Identified

Intermediate Representation

Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

Exchange Format

A
e N\
User Interface Device Interface
MQSS Client Remote Access Quantum Resource Manager and P QDMI Device
Compiler Infrastructure(QRM&CI) - Superconducting
Python - Dashboard
C
MQSS g < > QDMI Device
Adapter Python > ¢ Remote) Neutral Atoms
Interface & -
Eg: Qiskit, CUDAQ, E Quantum
1 Pennylane, ... Device QDMI Device
< Compiler <«—>| Management «—> lon Tra
| Scheduler Pass Runner | £ P
] HPC Access nterface
y % (QDMI)
C/C++ -
MQSS G " =
. C/C++ J 5 le R HPC B R < >
Adapter - Interface O "I Daemon | g Passes FoMaC
8 DB lib.
A
H| EgrapLcupAq,. [> QDMI Device
> < > Classical Simulator
(. J J (S J
' Y Y
Front-end Middle-end Back-end

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

7 TUT & -

Munich
Quantum
Valley

Munich Quantum Software Stack - MQSS
Challenges Identified

MQSS

Munich Quantum
Software Stack

Intermediate Representation Exchange Format

User Interface Blevice Interface

MQSS Client Remote Access Quantum Resource Manager and QDMI Device
Compiler Infrastructure(QRM&CI) Superconducting
Python - Dashboard
[
MQSS Python g < > QDMI Device
Adapter > ¢ Remote Neutral Atoms
Interface &
Eg: Qiskit, CUDAQ, E Quantum
L pemmyiane, . Commiler DEEs QDMI Device
“«—> P «—3 Management lon Tra
| Scheduler Pass Runner Interf P
] HPC Access ntertace
y A (QDMI)
C/C++ -
MQSS G b =
. C/C++ J 5 le R HPC B R < >
Adapter - Interface O Daemon g Passes FoMaC
8 DB lib
Eg: QPI, CUDAQ, T A *
4| g QP > . R QDMI Device
> N g Classical Simulator
(. J G J \\ J
22 Y Y
Front-end Middle-end Back-end

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 ‘#;: m M 22

Munich Quantum Software Stack - MQSS

» Challenges
% User Interface
% Device Interface
*» Intermediate Representation

s Exchange Format

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich Quantum Software Stack - MQSS
Path to MQSS-pulse

C-based Quantum Programming Interface

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

QPIL: A Programming Interface For Quantum
Computers

Erciiment Kaya‘f, Burak Mete*!, Laura Schulz*, Muhammad Nufail Farooqi*, Jorge Echavarria*, Martin Schulz!,
*Leibniz Sup ing Centre of the B ian Academy of Sciences and Humanities, Garching, Bavaria, Germany

{ercuement.kaya, burak.mete, laura.schulz,

faroogi, jorge. ia} @lrz.de

Technical University of Munich, Garching, Bavaria, Germany
{schulzm} @in.tum.de

Abstract—With the increasing maturity and accessibility of
quantum their and use in
the high-| ing (HPC) as a novel
accelerator triggers a crucial new area of research. To address
the demands for efficient and tightly coupled programming,
we present the Quantum Programming Interface (QPI), a C-
based library enabling the development of quantum tasks and
submission to quantum resources.

1. INTRODUCTION

High-performance computing (HPC) systems offer en-
hanced performance and less resource consumption by in-
tegrating various devices and architectures. On the other
hand, quantum computers (QC), with their unique computing
paradigm, hold promises of being accelerators and stand-alone
computational approaches, with their inherent capability of
tackling problems that would require exponential resources to
solve for their classical counterparts. However, it is essential to

that both i i can)l
each other; QCs enable solving or accelerating intrinsic prob-
lems in quantum computing, while HPC systems pave the way
for more optimal computing by handling operational control

tum resources for real-world applications. Furthermore, given
the possibility of multiple quantum backends employing var-
ious underlying technologies and features integrated into the
software stack, it is crucial to abstract the compilation layer
from both the application layer and the architecture. This is

achieved by the ion in a so-

called intermediate representation (IR), thereby adding support

for various hard ions and ing common

i such as scheduling and further
optimizations.

To tackle these challenges holistically, we present the Quan-
tum Programming Interface (QPI), a lightweight library to
embed quantum circuits in HPC applications. QPI enables the

ion of HPC applications by allowing to
describe their quantum or classical-quantum programs within
a common programming interface while efficiently leveraging
quantum resources, regardless of the quantum device respon-
sible for executing the job thereafter.

QPLis a C-programming interface that allows users to create
quantum circuits at a high level of abstraction, which are

of QCs, the compilation of quantum circuits, and supp
the parameter optimization of quantum circuits in variational
quantum algorithms.

Combining the radically different approaches of HPC sys-
tems with quantum computers presents a significant chal-
lenge at the software level. Beyond establishing a physical
connection, the software stack development enables seamless
user interaction between the two systems. Creating a hy-
brid application requires quantum programming tools (QPTs),
which are designed to specify the interaction between the
quantum computer and the HPC system. QPTs need to be
abstracted from the quantum component at the application
layer. M , QPTs must be ible with existing HPC
tools and higher-level i to create a
better user experience and facilitate maintenance.

Quantum circuit compilation is another crucial step within

then into an LLVM. iant IR, allowing seamless
communication and execution on various quantum computers
and simulators.

Our main contributions are the following:

« We elimi ication and i depend
from quantum circuits and HPC systems, simplifying the
creation of quantum circuits

We provide a holistic approach for hybrid quantum-
classical applications

‘We abstract the underlying technology of the target QPUs
and expose them as local accelerators

Overall, we offer a novel solution tailored for HPC
ecosystems for 1) describing quantum circuits through
an interface familiar to most researchers, 2) parsing
the quantum algorithm’s components into an LLVM-

the quantum integration software. It high-level IR, and 3) ing it to the quantum com-
quantum algorithms into hard pecific impl i piler for its subsequent execution by the targeted quantum
circuit i i reducing errors, and accelerator

ensuring compatibility with diverse quantum hardware tech-
nologies, enabling seamless and efficient utilization of quan-

These contributions are further described in section III.

979-8-3315-4137-8/24/$31.00 ©2024 IEEE 286

DOI 10.1109/QCE60285.2024.10293

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

DLR

24

Munich Quantum Software Stack - MQSS
Path to MQSS-pulse

C-based Quantum Programming Interface

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

QPI: A Programming Interface For Quantum

Computers

LLVM/IR-based compilation

Erciiment Kaya*]
*Leibniz Supe

Abstract—With th|
quantum computers|
the high-performanc]
accelerator triggers
the demands for ef
we present the Qual
based library enablis
submission to quant

High-performancd
hanced performancq
tegrating various d|
hand, quantum com
paradigm, hold pron]
computational appre
tackling problems th
solve for their classi
recognize that both
each other; QCs eng
lems in quantum corf
for more optimal c
of QCs, the compil:
the parameter optim
quantum algorithms|

Combining the raf
tems with quantumy
lenge at the softwal
connection, the soft]
user interaction be
brid application req
which are designed
quantum computer
abstracted from the]
layer. Moreover, QP
tools and higher-lej
better user experienq

Quantum circuit
the quantum integr]
quantum algorithms|
optimizing circuit e
ensuring compatibil]
nologies, enabling s

979-8-3315-4137-8/24/$3
DOI 10.1109/QCE60285.3

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

2024 [EEE ional C on Quantum Cy ing and Engineering (QCE)

Achieving Pareto-Optimality in Quantum Circuit
Compilation via a Multi-Objective Heuristic
Optimization Approach

Aleksandra S’wierkowska“‘, Jorge Echavarria®, Laura Schulz*, Martin Schulzf,
*Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities, Garching, Bavaria, Germany

kowska, jorge.

tia, laura.schulz} @Irz.de

TTechnical University of Munich, Garching, Bavaria, Germany
{martin.w.j.schulz} @tum.de

Abstract—High P C ing-Quantum C to the circuit !hrough the apphcauon of custom
(l'lll;CQt) epration l’l‘zﬂ“s a romisi yet o m“P‘ LLVM passes. ion schemes
portunity, particularly in the area of quantum circuit compilation
and optimization, requiring further advancements in the field of akm to th.e classical w.orld such as nerauvelly ipplymg LLVM
Quantum Computing (QC). To address this, we introd passes, ! classical into the
Munich Quantum Compiler, a key component of the Munich ~quantum domain, as we will elaborate.

Quantum Software Stack (MQSS). This compiler employs a The chall i with finding Pareto-optimal opti-

heuristic-based approach to select a Pareto-optimal subset of
optimizations in the form of LLVM passes for quantum circuits
described in an LLVM i
(R).

Index Terms—Quantum Computing, Multi-objective Opti-
mization, Quantum Compilation, LLVM, QIR, MOEA, Genetic
Algorithm, NSGA-II

1. INTRODUCTION

In recent years, Quantum Compulmg (QC) has demon-
strated significant potential for achieving 1 per-

mization subsets [13] and the sequence in which to apply them
[14], also known as phase ordering, have been extensively
studied in the classical compilation field. These are well-
known NP-Hard problems [15]. The proposed solutions range
from utilizing Genetic Algorithms (GAs) [16]-[18], for years
deemed as state-of-the-art, through more modern approaches
based on, for example, Machine Learning (ML) [19] or
Reinforcement Learning (RL) [15], [20], [21].

Similarly, ML and RL are usually utilized regarding quan-

formance improvements over classical algorithms for certain
classes of computational problems [1]-[5]. In order to en-
able wider growth and development of the quantum poten-
tial, efforts towards High Performance Computing-Quantum
Computing (HPCQC) integration have been initiated [6], [7].

tum ilation [22]-{25], mainly due to their efficient ex-
ecution times. However, most of the proposed approaches
in the literature focus on optimizing a singular objective,
usually a complex figure of merit consisting of a weighted
sum of multiple different objectives, such as depth or number
of games Althuugh the importance of some quantum metrics

their goal of providing seamless ion be-
tween classical and quantum parts of the system would allow
to reach a new territory of research, mainly in the form of
hybrid algorithms.

However, to be able to achieve a hybrid software stack, it is
necessary to design highly sophisticated compilers capable of
both: 1) providing effective optimizations for quantum circuits,
such as reducing their size to allow execution before significant
coherence degradation, and 2) adapting the quantum circuits
to the unique capabilities and limitations of the available quan-
tum accelerators. Furthermore, a quantum compiler should
be able to support the common software stack for classical
and quantum applications. For that reason, we decided to
utilize Quantum Intermediate Representation (QIR) [8], an
LLVM. i i ion (IR) supporting
interleaving quantum and classical instructions within a single

is the of effective quantum
performance metrics remains an active area of research [26].
To provide a change of metrics in a figure of merit in model-
based compilers, each time a tedious and time-consuming
model retraining is necessary.

The novelty of the quantum optimization approach proposed
in the Munich Quantum Compiler lies in providing a multi-
objective opumuauon through the utilization of a GA, more

ificall d d sorting-based Multi-Objective
Evolutionary Algonl.hm (MOEA) called Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II). This approach yields a
set of solution candidates belonging to the Pareto frontier, none
of which is fully dominated by any other solution found. While
GAs have proven to be highly effective in the classical domain,
to the best of our knowledge, they have not yet been applied
to the quantum version of this problem.

Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

DLR

25

Munich Quantum Software Stack - MQSS

C-based Quantum Programming Interface

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

QPI: A Programming Interface For Quantum
Computers

LLVM/IR-based compilation

Erciiment Kaya*]
*Leibniz Supe

Abstract—With th|
quantum computers|
the high-performan}
accelerator triggers
the demands for ef
we present the Qual
based library enablis
submission to quant

High-performancd
hanced performancq
tegrating various d|
hand, quantum com
paradigm, hold pron]
computational appre
tackling problems th
solve for their classi
recognize that both
each other; QCs eng
lems in quantum corf
for more optimal ct
of QCs, the compil:
the parameter optim
quantum algorithms

Combining the raf
tems with quantumy
lenge at the softwal
connection, the soft]
user interaction be
brid application req
which are designed
quantum computer
abstracted from the]
layer. Moreover, QP
tools and higher-lej
better user experien(

Quantum circuit
the quantum integr]
quantum algorithms|
optimizing circuit e
ensuring compatibil]
nologies, enabling s

979-8-3315-4137-8/24/$3
DOI 10.1109/QCE60285.3

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

2024 IEEE

Achieving Pareto-Optimality in Quantum Circuit
Compilation via a Multi-Objective Heuristic
Optimization Approach

C: on Quantum Cq ing and Engineering (QCE)

Aleksa
*Leibniz Supercomputir]

Abstract—High Performan(
(HPCQC) integration presen|
portunity, particularly in the
and optimization, requiring
Quantum Computing (QC).
Munich Quantum Compiler)
Quantum Software Stack (]
heuristic-based approach to
optimizations in the form of
described in an LLVM-com
(R).

Index Terms—Quantum
mization, Quantum Compilal
Algorithm, NSGA-IT

I. INTy

In recent years, Quantu:
strated significant potential
formance improvements ov
classes of computational p|
able wider growth and de
tial, efforts towards High §
Computing (HPCQC) integy
Reaching their goal of pre
tween classical and quantury
to reach a new territory of]
hybrid algorithms.

However, to be able to ac]
necessary to design highly
both: 1) providing effective
such as reducing their size t
coherence degradation, and
to the unique capabllmes any

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

QDMI - Quantum Device Management Interface:
Hardware-Software Interface for the Munich Quantum Software Stack

Robert Wille*!, Ludwig Schmid*, Yannick Stade*, Jorge Echavarria!, Martin Schulz*$, Laura Schulz!, Lukas Burgholzer*
*Chair for Design Automation, Technical University of Munich, Munich, Germany

tSoftware Comp Center F

#Leibniz Supercomputing

g GmbH, Hagent Austria
Centre, Garching, Germany

8Chair of Computer Architecture and Parallel Systems, Technical University of Munich, Munich, Germany
{robert.wille, ludwig.s.schmid, yannick.stade, martin.w.j.schulz, lukas.burgholzer} @tum.de
{laura.schulz, jorge.echavarria} @lrz.de

Abstract—Quantum ing is a isi hnol that
requires a sophisticated software stack to connect end users to
the wide range of possible quantum backends. However, current
software tools are usually hard-coded for single platforms and
lack a dynamic interface that can automaueally retrleve nnd
adapt to ing physical

Different quantum devices have different architectures, gate
sets, error rates, topology, calibration, and noise models or
provide fundamentally different operational capabilities such
as qubit shuttling [7], [8].

Different quantum algorithms have different requirements,

different platforms. With new plxtl rms

introduced and their perl‘nrmance changing on a dajly basis,
this constitutes a serious limitation. In this paper, we show-
case a concept and a prototypical realization of an interface,

bjecti and trade-offs [9]-[12]. In addition, these factors
can vary over time and depend on the environmental conditions
as well as the state of the device. This needs a way to enable

called the Quannm Device Management Interface (QDMI), that efficient ion and optimization between
addresses this problem by expllcltly connecting the mﬁware ilers and devices that and reflects
and between their

interests. QDMI allows hardware platforms to provide their
physical characteristics in a standardized way, and software
tools to query that data to guide the compilation process
accordingly. This enables software tools to automatically adapt
to different platforms and to optimize the compilation process
for the specific hardware constraints. QDMI is a central part of
the Munich Quantum Software Stack (MQSS)—a sophisticated
software stack to connect end users to the wide range of possible
quantum backends. QDMI is publicly available as open source
at i ich-Quant Stack/QD!

ML

1. MOTIVATION

the knowl dge base of the people developing said software
and hardware. After all, quantum computers are likely to
be used as accelerators for classical computing platforms
and, hence, need to be tightly integrated into the rest of the
ecosystem and workflows [13]. Such a communication and
optimization process would require a common language and
a standardized interface that both parties can understand and
use. This would allow the people developing software tools
to query relevant information and feedback about devices,
and the people developing the hardware to provide guidance,
express limitations, and offer suggestions in a standardized

and d machi form.

Quantum unlllyfthe ability to solve useful probl with

tum
be able to support the conf
and quantum applications.
utilize Quantum Intermedig
LLVM-compliant Intermedi{

interleaving quantum and cl

ering (QCE) | 979-8-3315-4137-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/QCE60285.2024.10411

ucially depends on the quahty of the
quantum software stack used to realize potential applications.
Such a stack consists of various layers of software tools
and must be able to connect the end users (usually domain
experts from the respective application areas such as material
simulation, machine learning or optimization) with the wide

In this paper, we showcase the Quantum Device Man-
agement Interface (QDMI) as a central part of the Munich
Quantum Software Stack (MQSS) that addresses this problem.
The MQSS is a project of the Munich Quantum Valley (MQV)
initiative and is jointly developed by the Leibniz Supercom-
puting Centre (LRZ) and the Chair for Design Automa-

Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

Technology-agnostic device-side interface

DLR

26

Munich Quantum Software Stack - MQSS
Path to MQSS-pulse

C-based Quantum Programming Interface

Computers

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

QPI: A Programming Interface For Quantum

LLVM/IR-based compilation

Erciiment Kaya*]
*Leibniz Supe

Abstract—With th|
quantum computers|
the high-performanc]
accelerator triggers
the demands for ef
we present the Qual
based library enablis
submission to quant

High-performancd
hanced performancq
tegrating various d|
hand, quantum com
paradigm, hold pron]
computational appre
tackling problems th
solve for their classi
recognize that both
each other; QCs eng
lems in quantum corf
for more optimal c
of QCs, the compil:
the parameter optim
quantum algorithms|

Combining the raf
tems with quantumy
lenge at the softwal
connection, the soft]
user interaction be
brid application req
which are designed
quantum computer
abstracted from the]
layer. Moreover, QP
tools and higher-lej
better user experienq

Quantum circuit
the quantum integr]
quantum algorithms|
optimizing circuit e
ensuring compatibil]
nologies, enabling s

979-8-3315-4137-8/24/$3
DOI 10.1109/QCE60285.3

2024 IEEE

Achieving Pareto-Optimality in Quantum Circuit
Compilation via a Multi-Objective Heuristic
Optimization Approach

C on Quantum C

and Engineering (QCE)

Aleksa
*Leibniz Supercomputir]

Abstract—High Performan(
(HPCQC) integration presen|
portunity, particularly in the
and optimization, requiring
Quantum Computing (QC).
Munich Quantum Compiler)
Quantum Software Stack (]
heuristic-based approach to
optimizations in the form of
described in an LLVM-com|
(R).

Index Terms—Quantum
mization, Quantum Compilal
Algorithm, NSGA-IT

L. INT|
In recent years, Quantu:
strated significant potential
formance improvements ov
classes of computational p|
able wider growth and de
tial, efforts towards High §
Computing (HPCQC) integy
Reaching their goal of pre
tween classical and quantury
to reach a new territory of]
hybrid algorithms.
However, to be able to ac]
necessary to design highly
both: 1) providing effective
such as reducing their size t
coherence degradation, and
to the unique capabilities an

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

QDMI - Quantum Device Management Interface:
Hardware-Software Interface for the Munich Quantum Software Stack

HPCQC integration

Robert Wille*|

§Chair

Abstract—Qua
requires a sophis
the wide range of]
software tools arf
lack a dynamic
adapt to changin
different platforny
introduced and
this constitutes 3
case a concept al
called the Quanty
addresses this pi
and hardware d
interests. QDMI
physical charactd
tools to query
accordingly. This
to different platfg
for the specific hq
the Munich Quar
software stack to
quantum backenc

at https:/github.q

Quantum utilif

tum
be able to support the conf
and quantum applications.
utilize Quantum Intermedig
LLVM-compliant Intermedi{

interleaving quantum and cl

ering (QCE) | 979-8-3315-4137-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/QCE60285.2024.10411

comput
quantum softwar|
Such a stack c
and must be abl]
experts from the

simulation, macH

g, Networking, Storage and Analysis | 979-8-3503-5554-3/24/$31.00 ©2024 IEEE | DOI: 10.1109/SCW63240.2024.00205

A Software Platform to Support Disaggregated
Quantum Accelerators

Erciiment Kaya'!, Jorge Echavarria’, Muhammad Nufail Faroogi!, Aleksandra Swierkowska'!, Patrick Hopf?'°, Burak Mete!',
Lukas Burgholzer', Robert Wille!, Laura Schulz?, Martin Schulz?',
#Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities, Garching, Germany
¥ Technical University of Munich (TUM), Munich, Germany
° Ludwig-Maximilians-Universitit Miinchen (LMU), Munich, Germany

Email: { kaya, jorge.ech:

farooqi i patrick.hopf, burak.mete, laura.schulz} @lrz.de*
{luka: robert.wille, martin.w.j de!

Abstract—Quantum computers are making their way into
High Performance Computing (HPC) centers as next-generation
accelerators. Due to their physical implementation as mostly
large appliances in separate racks, their number in typical data
centers is significantly lower than the number of nodes offloading
work to them, unlike the case with GPU accelerators. As a
they form large-scale di i

that pose a number of integration challenges due to their
diverse implementation technologies and their need to be used
as a shared resource for optimal utilization. Running hybrid

P Ci uantum Ce (HPCQC)
applications in HPC environments, where the quantum portion
is offloaded to the quantum processing units (QPUs), requires 5

isti resource ies to optimize re- Fig. 1: A view into the Quantum Integration Centre (QIC)
:::r:: "h;li;fﬂ':'ho: ﬁn“ii g:rg“m-sgm ﬂ:rse ';Lpg{ (:;Ql;rse;en: at LRZ/Munich showing a superconducting system (left), an
Just-In-Time (JIT) compilation and execution software stack for 101-1t2P system (middle) and HPC racks covering the classic
quantum and hybrid quantum-HPC workloads - beneficial for ~ compute. The result is a strongly disaggregated infrastructure
i i i quantum into iti combing classical HPC clusters with large-scale accelerator

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

Technology-agnostic device-side interface

DLR

27

Munich Quantum Software Stack - MQSS

Computers

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

C-based Quantum Programming Interface

QPI: A Programming Interface For Quantum

Erciiment Kaya*]
*Leibniz Supe

Abstract—With th|
quantum computers|
the high-performan}
accelerator triggers
the demands for ef
we present the Qual
based library enablis
submission to quant

High-performancd
hanced performancq
tegrating various d|
hand, quantum com
paradigm, hold pron]
computational appre
tackling problems th
solve for their classi
recognize that both
each other; QCs eng
lems in quantum corf
for more optimal ct
of QCs, the compil:
the parameter optim
quantum algorithms

Combining the raf
tems with quantumy
lenge at the softwal
connection, the soft]
user interaction be
brid application req
which are designed
quantum computer
abstracted from the]
layer. Moreover, QP
tools and higher-lej
better user experien(

Quantum circuit
the quantum integr]
quantum algorithms|
optimizing circuit e
ensuring compatibil]
nologies, enabling s

979-8-3315-4137-8/24/$3
DOI 10.1109/QCE60285.3

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

2024 IEEE

Achieving Pareto-Optimality in Quantum Circuit
Compilation via a Multi-Objective Heuristic

C on Quantum C

and

Optimization Approach

(QCE)

LLVM/IR-based compilation

Technology-agnostic device-side interface

Aleksa
*Leibniz Supercomputir]

Abstract—High Performan(
(HPCQC) integration presen|
portunity, particularly in the
and optimization, requiring
Quantum Computing (QC).
Munich Quantum Compiler)
Quantum Software Stack (]
heuristic-based approach to
optimizations in the form of
described in an LLVM-com
(R).

Index Terms—Quantum
mization, Quantum Compilal
Algorithm, NSGA-IT

I. INTy

In recent years, Quantu:
strated significant potential
formance improvements ov
classes of computational p|
able wider growth and de
tial, efforts towards High §
Computing (HPCQC) integy
Reaching their goal of pr
tween classical and quantury
to reach a new territory of]
hybrid algorithms.

However, to be able to ac]
necessary to design highly
both: 1) providing effective
such as reducing their size t
coherence degradation, and
to the unique capabllmes any

Hardware-Software Interface for the Munich Quantum Software Stack

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

QDMI - Quantum Device Management Interface:

HPCQC integration

Robert Wille*|

§Chair

Abstract—Qua
requires a sophis
the wide range of]
software tools arf
lack a dynamic
adapt to changin
different platforny
introduced and
this constitutes 3
case a concept al
called the Quanty
addresses this p!
and hardware d
interests. QDMI
physical charactd
tools to query
accordingly. This
to different platfg
for the specific hq
the Munich Quar
software stack to
quantum backenc

at https:/github.q

Quantum utilif

tum
be able to support the conj
and quantum applications.
utilize Quantum Intermedig
LLVM-compliant Intermedi

interleaving quantum and cl

ering (QCE) | 979-8-3315-4137-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/QCE60285.2024.10411

comput
quantum softwar|
Such a stack c
and must be abl]
experts from the
simulation, macH

109/SCW63240.2024.00205

3
a
@
a8
2]
3
3
S
b
g
g
8
3
b3
7
b
8
g
b
%
S
&
B
E
:
3
]
g
M
)
g
g
3
@
£
%
5
4
£l

A Software Platform to Support Disaggregated

Quantum Accelerators

LLVM/MLIR-based compilation

Erciiment Kaya’

*Leibry

Email: {ercuement §

Abstract—Quantuf

Performance (}
accelerators. Due t
large appliances in s|
centers is significantl|
work to them, unli}
consequence, they fof
that pose a numb
diverse i

Towards a Unified Multi-Target MLIR-Based Compiler:
A Heterogeneous Compilation Framework for
High-Performance and Quantum Computing Integration

Martin Letras ©, Jorge Echavarria ©, Muhammad Nufail Farooqi
Laura Schulz

Leibniz Supercomputing Centre (LRZ), D

, Marco De Pascale
, and Martin Schulz
of Quantum C i

,Mario Herndndez Vera ©, Nathaniel Tornow,

g and Technol (QCT), Garching, Germany

e-mail:{martin.letras, jorge.echavarria, muhammad.faroogi, marco.depascale, mario.hernandezvera, nathaniel.tornow, laura.schulz, martin.schulz} @lrz.de

Abstmct—The Munich Quantum Software Stack (MQSS) is

as a shared resourq
High Performance

applications in HPC|
is offloaded to the

sophisticated resour|
source utilization ar|
one aspect of the M
Just-In-Time (JIT)

quantum and hybri
integrating disaggreg

and runtime infrastructure designed to bridge
'.he gap between high-performance computing (HPC) and quan-
tum computing (QC). A unified, extensible, and efficient com-
pilation framework becomes important as quantum devices
and applications smle This paper proposes the mmgrauon of

supporting high-level quantum program transformations and
hardware-specific optimizations [15]. LLVM/QIR is a low-
level instruction-based IR, which is tightly coupled with
LLVM’s backend and operates at a granularity that often
removes the program structure and the exposure of data de-

Multi-Level (MLIR) as pend [16, 17]. These potennal limitations can restrict the
representation into the MQSS to address the chall of impl ion of ad d opti i that benefit from
and hybrid cl. icati 1ot o . . .
across diverse quantum devices. Accordingly, the MQSS can bstracti i information or required domain-specific
separate abstraction layers, enabling high-level optimizations, : —Sn.a? .(.)?,S'.- e ettt e MIE T el Teomen A

28
DLR

Munich Quantum Software Stack - MQSS

Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

C-based Quantum Programming Interface

QPI:

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

A Programming Interface For Quantum
Computers

Erciiment Kaya*]
*Leibniz Supe

Abstract—With th|
quantum computers|
the high-performan}
accelerator triggers
the demands for ef
we present the Qual
based library enablis
submission to quant

High-performancd
hanced performancq
tegrating various d|
hand, quantum com
paradigm, hold pron]
computational appre
tackling problems th
solve for their classi
recognize that both
each other; QCs eng
lems in quantum corf
for more optimal ct
of QCs, the compil:
the parameter optim
quantum algorithms

Combining the raf
tems with quantumy
lenge at the softwal
connection, the soft]
user interaction be
brid application req
which are designed
quantum computer
abstracted from the]
layer. Moreover, QP
tools and higher-lej
better user experien(

Quantum circuit
the quantum integr]
quantum algorithms|
optimizing circuit e
ensuring compatibil]
nologies, enabling s

979-8-3315-4137-8/24/$3
DOI 10.1109/QCE60285.3

2024 [EEE ional C on Quantum C ing and Engi (QCE)

Achieving Pareto-Optimality in Quantum Circuit
Compilation via a Multi-Objective Heuristic
Optimization Approach

LLVM/IR-based compilation

Technology-agnostic device-side interface

Aleksa
*Leibniz Supercomputir]

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

QDMI - Quantum Device Management Interface:
Hardware-Software Interface for the Munich Quantum Software Stack

HPCQC integration

Abstract—High Performan(
(HPCQC) integration presen|
portunity, particularly in the
and optimization, requiring
Quantum Computing (QC).
Munich Quantum Compiler)
Quantum Software Stack (]
heuristic-based approach to
optimizations in the form of
described in an LLVM-com
(R).

Index Terms—Quantum

Robert Wille*|

§Chair

Abstract—Qua
requires a sophis

A Software Platform to Support Disaggregated
Quantum Accelerators

mization, Quantum Compilaf the wide range of]

Algorithm, NSGA-II software tools ar¢ Erciiment Kaya'
lack a dynamic
L InTl adapt to changin #Leibny

different platforny
introduced and
this constitutes 3
case a concept al
called the Quanty
addresses this p!
and hardware d
interests. QDMI
physical charactd

In recent years, Quantu:
strated significant potential
formance improvements ov
classes of computational p|
able wider growth and de
tial, efforts towards High §
Computing (HPCQC) integy

Email: {ercuement §

Towards a Unified Multi-Target MLIR-Based Compiler:
A Heterogeneous Compilation Framework for
High-Performance and Quantum Computing Integration

The MQSS

LLVM/MLIR-based compilation

Abstract—Quantul
High Performance (]
accelerators. Due t
large appliances in |
centers is significantl]
work to them, unlil
consequence, they fo
that pose a numbd
diverse i
as a shared resourq
High Performance

applications in HPC|
is offloaded to the

sophisticated resour|
source utilization ar|
one aspect of the M
Just-In-Time (JIT)

quantum and hybri

tools to query

accordingly. This
to different platfg
for the specific hq
the Munich Quar
software stack to
quantum backenc
at https:/github.q

Reaching their goal of pr
tween classical and quantury
to reach a new territory of]
hybrid algorithms.
However, to be able to ac]
necessary to design highly
both: 1) providing effective
such as reducing their size t
coherence degradation, and
to the unique capabilities an
tum Furth
be able to support the conj
and quantum applications.
utilize Quantum Intermedig
LLVM-compliant Intermedi

Martin Letras ©, Jorge E]

Leibniz Supercompy
e-mail:{martin.letras, jorge.ed

Abstract—The Munich
a ilation and runtin|
the gap between high-perf
tum computing (QC). A |
pilation framework becol
and applications scale. TH
Multi-Level Intermediate K
representation into the N
optimizing and compiling
across diverse quantum (

Quantum utilif
comput
quantum softwar|
Such a stack c
and must be abl]
experts from the

g, Networking, Storage and Analysis | 979-8-3503-5554-3/24/831.00 ©2024 IEEE | DOI: 10.1109/SCW63240.2024.00205

2ring (QCE) | 979-8-3315-4137-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/QCE60285.2024.10411

interleaving quantum and cli simulation, macH integrating disaggreg separate abstraction layer]

The Munich Quantum Software Stack: Connecting End Users, Integrating
Diverse Quantum Technologies, Accelerating HPC

LUKAS BURGHOLZER?®, Technical University of Munich, Germany and Munich Quantum Software Company
GmbH, Germany
JORGE ECHAVARRIA’, Leibniz Supercomputing Centre, Germany

PATRIAL, T1IARE s . - caA RPN . P -~ ~ v

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

29

i DLR

Munich Quantum Software Stack - MQSS

Munich Quantum
Software Stack

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

QPI: A Programming Interface For Quantum
Computers

2024 [EEE ional C on Quantum C ing and Engineering (QCE)

Erciiment Kaya*]
*Leibniz Supe

Achieving Pareto-Optimality in Quantum Circuit
Compilation via a Multi-Objective Heuristic
Absrac—ith Optimization Approach

quantum computers| z.

the high-performand
accelerator triggers)) o
the demands for e s Aleksarl 2024 IEEE International Conference on Quantum Computing and Engineering (QCE)
we present the Qua Leibniz Supercomputir]
based library enabli
bmission to t . "
submssion fo-quan QDMI - Quantum Device Management Interface:
Hardware-Software Interface for the Munich Quantum Software Stack
High-performancd
hanced perf Abstract—High Performan{ ile*
‘anceA performancq (HPCQC) integration presen Robert Wille
egrating various d| 2 gration prese "
hand, quantum com| portunity, particularly in the &
and, q and optimization, requiring g
paradigm, hold pron| Quantum Computing (QC). S
computational appre Munich Quantum Compiler §Chair g 5
tackling problems tH Quantum Software Stack (g
o eurisic basd. approsch 1 : A Software Platform to Support Disaggregated
recognize that both :p“"f':::m.ns n T{éﬁm of 3 A 1
escril in an -com| 153
cach other; QCs end des ” Abstraci—Qual 2 Quantum Accelerators
lems in quantum corf Index Terms—Quantum | requires a sophisj <
for more optimal ¢ mization, Quantum Compila| lh:‘ wide :anlgse of] Eretment Ka
. i] o software tools argy ‘cument a’
of QCs, the compil Algorithm, NSGA-IL g o e 5 y
the parameiter optim) L 8 adapt to changij = *Leibr
quantum algorithms) 2 different platforny =
Combining the In recent yeas, Quant| £ introduced and £ Towards a Unified Multi-Target MLIR-Based Compiler:
tems with quantuny strated significant potential = this constitutes 4 é
i S case a concept al X . .
lenge at th softwa formance improvements o & case a concept a) & Bl ercuement A Heterogeneous Compilation Framework for
connection, the soff] classes of computational p| < addresses this p| S
user interaction bef able wider growth and de s and hardware d o M Q 3 :
rfuiidle Gal, offors sowands High | & oo, hardvare 4 2 High-Performance and Quantum Computing Integration
which are designed Computing (HPCQC) integy g &h){si:?l charactd i Al Qv
Reaching thei: al of u ols to query b3 Abstrac uantuy
quantum computer l‘:::n I::‘lgas si:; :}‘od \:’ans:n 3 accordingly. This| 7 High Performance C} Martin Letras ©, Jorge E¢
;\bslmt;\:led from (l)hl: to reach & mew lerrgory o g to different platf§ 2 accelerators. Due ts
ayer. Moreover, for the specific hf & large appliances in s| .-
tools and higher-le hybrid algorithms. E the Munich Quarl % centers s significantl] ~ Leibniz Supercompy
better user experien However, to be able to ac| & software stack to | & work to them, nnflil e-mail: {martin.letras, jorge.eq
e @ e 2 C . . .
Qe il pocessary o :;:::;éfﬁ g e 2 g Abstract—The Munich The Munich Quantum Software Stack: Connecting End Users, Integrating
e quantum integr| : ¢ Hect g | diverse i a ilation and runtin] . . .
quantum algorithms such as reducing their size td 3 2 as a shared resourd the gap between high-perf Diverse Quantum Technologies, Accelerating HPC
optimizing circuit ¢ coherence degradation, and| » | E High Performance tum computing (QC). A
ensuring compatibil] to the unique capabilities an{ 2 Quantum utili) ?pplf';’“:"; :n xc pilation framework beco:
nologies, enabling tum accelerators. Furtherm| quantum compuf sopbisticated esoun and applications scale. TH LUKA
be able to support the con| & quantum softwar} 7 source utilization: s Multi-Level Intermediate R
and quantum applications. | = Such a stack ¢ _g one aspect of the M representation into the N GmbH, . .
o79.83315.4137.804153 uilize Quantum Intermedif § and must be ablj % Just-In-Time GIT) optimizing and compiling : Tackling the Challenges of Adding Pulse-level Support to a
DOI 10.1109/QCE60285.9 LLVM-compliant Intermedi{ ‘= experts from the s quantum and hybri across diverse quantum d JORGE 2 &
interleaving quantum and cl| & simulation, macl] % integrating disaggre separate abstraction laye oaroid Heterogeneous HPCQC Software Stack

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 IR

Munich Quantum Software Stack - MQSS

» Port
% Software abstraction representing any input or output component controlling qubits

* It allows a hardware vendor to provide relevant actuation knobs they wish to
expose to the user in order to manipulate and observe qubits?

3 While hiding the complexities of the device’s underlying technology

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m 31

Munich Quantum Software Stack - MQSS

> Waveform

* Time-dependent envelope that can be used to emit signals on an output port or receive
signals from an input port

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m

32

Munich Quantum Software Stack - MQSS

> Frame

% A software abstraction that acts as*°:
» Clock within the quantum program with its time being incremented on each usage

= A stateful carrier signal defined by a frequency and phase

4 When transmitting signals to the qubit, a frame determines: a) time at which the waveform envelope is emitted, b) its carrier frequency,
and c) its phase offset

5When capturing signals from a qubit, at minimum a frame determines the time at which the signal is captured

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m m 33

Munich Quantum Software Stack - MQSS

Summary
» Challenges » Abstractions
¢ User Interface s Frame
¢ Device Interface s Waveform
* Intermediate Representation s Port

* Exchange Format

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

Intermediate Representation Exchange Format
A A
r N\ 'd
User Interface Device Interface
Remote Access Quantum Resource Manager and > - QDMI Device
Compiler Infrastructure(QRM&CI) - - Superconducting
c
Mass Python 2 N > . QDMI Device
Adapter Q > h - Neutral Atoms
Interface 5
Eg: Qiskit, CUDAQ, & Quantum
Pennylane, .. Device g
Compiler M > R QDMI Device
< > < > anagement € > lon Tra
Scheduler Pass Runner P
Interface
x (QDMI)
C/C++ -) 2 A 4
c
MQSS C/Cos % N < >
Adapter Interface) - Passes FoMe%
a DB =
I X -
Eg: QPI, CUDAQ, .. A > QDMI Device
>) Classical Simulator
AN J &
Y Y
Middle-end Back-end

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQSS Pulse
User Interface

Current MQSS Adapters

Amazon
ﬂ Braket

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQSS Pulse

from braket.aws import AwsDevice
from braket.devices import Devices
from braket.ir.opengasm import Program
openpulse_script = """
OPENQASM 3.0:
cal {
bit[1] psb;
waveform my_waveform = gaussian(12.0ns, 3.0ns, 0.2, false);
play(Transmon_25_charge_tx, my_waveform);
psb[0] = capture_v@(Transmon_25_readout_rx);

}

program = Program(source=openpulse_script)

device = AwsDevice(Devices.Rigetti.Ankaa3)
task = device.run(program, shots=100)

cal {...}

 The cal (calibration) block is where you describe pulses and
measurements directly (rather than high-level gates)

* Anything inside here is interpreted as a pulse program

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich Quantum
Software Stack

37

Munich Quantum
Software Stack

v" OPENQASM 3.0 cal { ... } > OpenPulse (waveform)

"openpulse_version": "1.0",
"backend": "quantum_accelerator_v1",
"pulse_library": [

{

bit[1] psb; * "name": "my_waveform",
waveform my_waveform = gaussian(12.0ns, 3.0ns, 0.2, false); j "samples": [

[0.000, 0.0001,

play(Transmon_25_charge_tx, my_waveform);
psb[0] = capture_v@(Transmon_25_readout_rx);

[0.000, 0.000]

cal{...}

 The cal (calibration) block is where you describe pulses and
measurements directly (rather than high-level gates)

* Anything inside here is interpreted as a pulse program

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %?R m

38

MQSS Pulse

bit[1] psb;

waveform my_waveform = gaussian(12.0ns, 3.0ns, 0.2, false);
play(Transmon_25_charge_tx, my_waveform);

psb[0] = capture_v@(Transmon_25_readout_rx);

cal{...}

 The cal (calibration) block is where you describe pulses and

measurements directly (rather than high-level gates)

* Anything inside here is interpreted as a pulse program

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQSS

Munich Quantum
Software Stack

"frames": [
{
"name": "g25_tx_frame",
"frame": {
"port": "Transmon_25_charge_tx",
"frequency": 5.0e9,
"phase": 0.0
3
1,
{
"name": "g25_rx_frame",
"frame": {
"port": "Transmon_25_readout_rx",
"frequency": 6.5e9,
"phase": 0.0

. TUTI

39

MQSS Pulse

bit[1] psb;

waveform my_waveform = gaussian(12.0ns, 3.0ns, 0.2, false);
play(Transmon_25_charge_tx, my_waveform);

psb[0] = capture_v@(Transmon_25_readout_rx);

cal{...}

 The cal (calibration) block is where you describe pulses and

measurements directly (rather than high-level gates)

* Anything inside here is interpreted as a pulse program

v OPENQASM 3.0 cal { ... } > OpenPulse (port)

Munich Quantum
Software Stack

"schedule": [
{
"name": "drive_qg25",
"tQ": 0,
"port": "Transmon_25_charge_tx",
"waveform": "my_waveform",

"frame": "g25_tx_frame"

"name": "acquire_g25",

"to": 120,

"duration": 240,

"port": "Transmon_25_readout_rx",
"frame": "g25_rx_frame",
"memory_slot": 0,

"mode": "vO"

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m

40

MQSS Pulse

Munich Quantum
Software Stack

from braket.pulse import ArbitraryWaveform, ConstantWaveform

cst_wfm = ConstantWaveform(length=1e-7, iq=0.1)
arb_wf = ArbitraryWaveform(amplitudes=np.linspace(0, 100))

gaussian_waveform = GaussianWaveform(le-7, 25e-9, 0.1)

pulse_sequence = (
PulseSequence()
.play(drive_frame, waveform)
.capture_v@(readout_frame)

start_length=12e-9
end_length=2e-7
lengths = np.arange(start_length, end_length, 12e-9)

tasks = [
device.run(pulse_sequence, shots=100, inputs={"length": length})
for length in lengths

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m

MQSS Pulse

cst_wfm = ConstantWaveform(length=1e-7, iq=0.1)
arb_wf = ArbitraryWaveform(amplitudes=np.linspace(0, 100))
gaussian_waveform = GaussianWaveform(le-7, 25e-9, 0.1)

pulse_sequence = (

PulseSequence()

.play(drive_frame, waveform)
.capture_v@(readout_frame)

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich Quantum
Software Stack

42

MQSS Pulse

User Interface — MQSS Quantum Programming Interface (QPl) Adapter Mrich Qyantum

#include <qpi.h>

int main(){
do{
void* results = malloc(size);
pulse_vge_quantum_kernel (&results, nshots, &
<—>parameters);
parameters = calculate_new_parameters (&results,
< parameters)
Ywhile(stop_condition == false);
return 0;

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

void pulse_vqge_quantum_kernel (void *results, int nshots

<, Parameters *p) {

QCircuit circuit;

qCircuitBegin(&circuit)

QClassicalRegisters cr;

gInitClassicalRegisters(&cr, 2);

// we begin with X on both qubits

ax () ;

ax(1);

// define the waveforms

gWaveform(&waveform_1, p->amps_1);

gWaveform(&waveform_2, p->amps_2);

gWaveform(&waveform_3, p->amps_3);

// apply the waves

gPlayWaveform(gb1_drive_port, waveform_1);

gPlayWaveform(gb2_drive_port, waveform_2);

// do the frame changes

gFrameChange (gqb1_drive_port, freq_qbl, p->phase_qgb1
—);

gFrameChange (gb2_drive_port, freq_qb2, p->phase_qgb2
—);

// apply the entangling pulse

gPlayWaveform(gb1_gb2_coupler_port, waveform_3);

// measure

gMeasure (0, 0);

gMeasure (1, 1);

qCircuitEnd () ;

if (! gExecute(dev, circuit, nshots))
QuantumResult* results = gRead(circuit);

gqCircuitFree(circuit);

TUTN & -

Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

Intermediate Representation Exchange Format
A
4 A\

User Interface Device Interface

K_J%

Remote Access Quantum Resource Manager and QDMI Device

Compiler Infrastructure(QRM&.CI) g Superconducting
Python Dashboard .

MQSS
Adapter Python

Remote . Neutral Atoms
Interface
Eg: Qiskit, CUDAQ, Quantum

nnyl i

Pennylane, Comiler Device QDMI Device

P Management € lon Tra
Scheduler Pass Runner Interface P
(QDMI)
C/C#+
MQsSS CICH : HPC — \
DB

A

QDMI Device

A
A

-

c
Q2
N
—
0
|
a4

A
\ 4

IS

() < >

= < >

Adapter Interface %) Daemon aC
% lib.
Eg: QPI, CUDAQ, ... y _ QDM| Device
D Classical Simulator
N J
Y
Front-end Middle-end Back-end

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQSS Pulse

2024 IEEE International C

ce on Quantum C ing and

Computers

(QCE)

QPI: A Programming Interface For Quantum

Erciiment Kaya*|
*Leibniz Superd

Abstract—With thy
quantum computers}
the high-performand
accelerator triggers
the demands for ef]
we present the Quaj
based library enabli
submission to quant;

High-performancd
hanced performancy
tegrating various d
hand, quantum com|
paradigm, hold pron}
computational apprd
tackling problems t
solve for their classi
recognize that both
each other; QCs eng
lems in quantum co
for more optimal ¢
of QCs, the compil.
the parameter optinj
quantum i

Combining the rd
tems with quantuny
lenge at the softwal
connection, the sofi]
user interaction bel
brid application req)
which are designed
quantum computer
abstracted from th
layer. Moreover, QP
tools and higher-lef
better user experien

Quantum circuit
the quantum integ:
quantum algorithmy
optimizing circuit ef
ensuring compatibil}
nologies, enabling §

979-8-3315-4137-824/83
DOI 10.1109/QCE60255]

2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

Achieving Pareto-Optimality in Quantum Circuit
Compilation via a Multi-Objective Heuristic
Optimization Approach

Munich

AN MQSS

Munich Quantum
Software Stack

Aleksar
*Leibniz Supercomputir]

Abstract—High Performan{
(HPCQC) integration presen|
portunity, particularly in the
and optimization, requiring
Quantum Computing (QC).
Munich Quantum Compiler)
Quantum Software Stack (
heuristic-based approach to
optimizations in the form of
described in an LLVM-com|
(IR).

Index Terms—Quantum
mization, Quantum Compila
Algorithm, NSGA-II

L INT
In recent years, Quantus
strated significant potential
formance improvements ov
classes of computational p|
able wider growth and dey|
tial, cfforts towards High H
Computing (HPCQC) integy
Reaching their goal of pr
tween classical and quantury
to reach a new territory of]
hybrid algorithms.
However, to be able to ac]
necessary to design highly
both: 1) providing effective
such as reducing their size tc
coherence degradation, and
to the unique capabilities an
tum accelerators. Furtherm)
be able to support the conf
and quantum applications.
utilize Quantum i

LLVM-compliant Intermedij

interleaving quantum and cl;

ering (QCE) | 979-8-3315-4137-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/QCE60285.2024.10411

2024 IEEE L ional C

QDMI - Quantum Device Management Interface:
Hardware-Software Interface for the Munich Quantum Software Stack

on Quantum C

and Engineering (QCE)

Robert Wille*
§Chair

Abstract—Quay
requires a sophis]
the wide range of]
software tools ar{
lack a dynamic
adapt to changin
different platforny
introduced and
this constitutes o
case a concept af
called the Quanty

interests. QDMI
physical charactd
tools to query

accordingly. This|
to different platf
for the specific hg
the Munich Quarj
software stack to
quantum backent
at https://github.q

Quantum utili
quantum comput]
quantum softwar|
Such a stack c
and must be abl}
experts from the

simulation, macH

2, Networking, Storage and Analysis | 979-8-3503-5554-3/24/$31.00 ©2024 IEEE | DOIL: 10.1109/SCW63240.2024.00205

A Software Platform to Support Disaggregated
Quantum Accelerators

Erctiment Kaya

*Leibny

Email: {ercuement)

Abstract—Quantu
High Performance C}
accelerators. Due te
large appliances in s|
centers is significantl]
work to them, unli
consequence, they fo
that pose a numbd
diverse implementat§
as a shared resourg
High Performance
applications in HPC|
is offloaded to the
sophisticated resoury
source utilization ary
one aspect of the M
Just-In-Time (JIT) cf
quantum and hybri

integaling diseseres

Towards a Unified Multi-Target MLIR-Based Compiler:
A Heterogeneous Compilation Framework for
High-Performance and Quantum Computing Integration

Martin Letras @, Jorge Ec|

Leibniz Supercompy
e-mail: {martin.letras, jorge.eq

Abstract—The Munich
a compilation and runtin]
the gap between high-perfd
tum computing (QC). A
pilation framework becol
and applications scale. TH
Multi-Level Intermediate R
representation into the N
optimizing and compiling
across diverse quantum (

separate abstraction layer]

The Munich Quantum Software Stack: Connecting End Users, Integrating
Diverse Quantum Technologies, Accelerating HPC

LUKA!
JGgszE J Tackling the Challenges of Adding Pulse-level Support to a
oaroid Heterogeneous HPCQC Software Stack

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

DLR

45

Munich
Quantum
Valley

MQSS Pulse MQSS

Munich Quantum
Software Stack

4 N\
2024 IEEE International C ce on Quantum C and (QCE) Qu antum
. Algorithms
A Programming Interface For Quantum \ ,
Computers (Y
Quantum g
Ercliment Kaya*# 2024 IEEE International Conference on Quantum Computing and Engineering (QCE) cil’cu its
*Leibniz Stzlpm s /
ing Pareto-Optimality in Quantum Circuit e)
e ate-Set =% ———
tion via a Mulu-ObJectlve Heuristic Gomplletion =i 1nis
v o ptimization Approach - .
the high-performand 7 ~
gy gt Aleksar) 2024 IEEE I 1C on Quantum C and Engineering (QCE)
w: p:;:: :h,oa:n *Leibniz Supercomputir] € B Pulse-Level _/\/_\/\/\
based library enabli . Control
shmeion S 1t QDMI - Quantum Device Management Interface: J
T oftware Interface for the Munich Quantum Software Stack X
igh-performancy
hanced performancq Abstract—Ligh Performant Robert Wille Physical
tegrating various d (HPCQC) integration preser
, quantum com poutmigy, petticulrly In he Hardware L

computational apprd
tackling problems t
solve for their classi
recognize that both
each other; QCs eng
lems in quantum co
for more optimal ¢
of QCs, the compil.
the parameter optinj
quantum i

Combining the rd
tems with quantuny
lenge at the softwal
connection, the sofi]
user interaction bel
brid application req)
which are designed
quantum computer
abstracted from th
layer. Moreover, QP
tools and higher-lef
better user experien

Quantum circuit
the quantum integ:
quantum algorithmy
optimizing circuit ef
ensuring compatibil}
nologies, enabling §

979-8-3315-4137-824/83
DOI 10.1109/QCE60255]

Munich Quantum Compiler)
Quantum Software Stack (
heuristic-based approach to
optimizations in the form of
described in an LLVM-com|
(IR).
Index Terms—Quantum

mization, Quantum Compila
Algorithm, NSGA-II

L INT

In recent years, Quantus
strated significant potential
formance improvements ov
classes of computational p|
able wider growth and dey|
tial, cfforts towards High H
Computing (HPCQC) integy
Reaching their goal of pr
tween classical and quantury
to reach a new territory of]
hybrid algorithms.

However, to be able to ac]
necessary to design highly
both: 1) providing effective
such as reducing their size tc
coherence degradation, and
to the unique capabilities an
tum accelerators. Furtherm)
be able to support the conf
and quantum applications.
utilize Quantum i

LLVM-compliant Intermedij

interleaving quantum and cl;

ering (QCE) | 979-8-3315-4137-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/QCE60285.2024.10411

Abstract—Quay
requires a sophis]
the wide range of]
software tools ar{
lack a dynamic
adapt to changin
different platforny
introduced and
this constitutes o
case a concept af
called the Quanty

interests. QDMI
physical charactd
tools to query

accordingly. This|
to different platf
for the specific hg
the Munich Quarj
software stack to
quantum backent
at https://github.q

Quantum utili
quantum comput]
quantum softwar|
Such a stack c
and must be abl}
experts from the

simulation, macH

2, Networking, Storage and Analysis | 979-8-3503-5554-3/24/$31.00 ©2024 IEEE | DOI: 10.1109/SCW63240.2024.0020:

*Leibny

Email: {ercuement)

Abstract—Quantu
High Performance C}
accelerators. Due te
large appliances in s|
centers is significantl]
work to them, unli
consequence, they fo
that pose a numbd
diverse implementat§
as a shared resourg
High Performance
applications in HPC|
is offloaded to the
sophisticated resoury
source utilization ary
one aspect of the M
Just-In-Time (JIT) cf
quantum and hybri

integaling diseseres

oftware Platform to Support Disaggregated
Quantum Accelerators

High

Martin Letras @, Jorge Ec|
Leibniz Supercompy
e-mail: {martin.letras, jorge.eq

Abstract—The Munich
a compilation and runtin]
the gap between high-perfd
tum computing (QC). A
pilation framework becol
and applications scale. TH
Multi-Level Intermediate R
representation into the N
optimizing and compiling
across diverse quantum (

ds a Unified Multi-Target MLIR-Based Compiler:

eterogeneous Compilation Framework for
ance and Quantum Computing Integration

unich Quantum Software Stack: Connecting End Users, Integrating
Quantum Technologies, Accelerating HPC

separate abstraction layer]

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

: Tackling the Challenges of Adding Pulse-level Support to a
) Heterogeneous HPCQC Software Stack

DLR

4

6

MQSS Pulse
Intermediate Representation — The Path to Pulse-level Control

& A

. Quarytum M
High| [(source code Aeorithms)

Level \\\ (Quantum H)

\ Circuits

Clang AST (Gate-Set '—-'——\

= ale |
' Compilation #s—=—=
.

Pulse-Level ,\ A A A
Control
Level of > <
: s)
Abstraction Physical
Hardware {
. >

| pialect n-1

\}
AY
\

- VM IR

Front-end Middle-End Back-end

Runtime & Compilation Flow

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQSS Pulse i
Intermediate Representation — The Path to Pulse-level Control

MQ

-

Quantum
L Algorithms)

4 n
o, =
Circuits
(. J
4 N\

Gate-Set =& ———
-—a—
Compilation #s—=—=

e N
Pulse-Level ,\n A,
Control
Level of > <
&
Abstraction Physical)
Hardware)
.

Front-end Middle-End Back-end

Runtime & Compilation Flow

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQSS Pulse
Intermediate Representation — MLIR Dialects

» “Traditional” pulse compilation workflow:
1. Quantum operations are translated into pulse-level operations
2. Pulse-level operations are optimized and scheduled

3. Optimized and scheduled pulse-level operations are lowered to hardware primitives

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQSS Pulse

> |QM’s Quantum Engine Compiler () supports the following MLIR dialects:
% OpenQASM3 IR (0g3)

% Quantum IR/dialect (quir)
v’ Consistent with 2

v’ Consistent with OpenPulse

» Seamless translation from gate-level quantum circuits into sequences of pulse operations on
frames using MLIR pulse calibrations that the compiler receives as input

2 Quantum Operations = Gates & Measurements

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m

50

MQSS Pulse
Intermediate Representation — MLIR Dialects

IBM’s pulse

module {
pulse.def @waveform_1 { // Define waveforms
pulse.waveform amplitudes = %amplitudes_in : vector.vector<5
<—x1i32>
}
pulse.def @waveform_2 { ... }
pulse.def @waveform_3 { ... }

// Main pulse-level kernel

pulse.sequence @pulse_vge_quantum_kernel(

%drive@: !!pulse.mixed_frame, %drivel: !pulse.mixed_frame,
%coupler: !pulse.mixed_frame, %freq: f64,

%phase: f64) -> i1l

attributes { pulse.argPorts = ["g@-drive-port",
"q1-drive-port", "g@ql-coupler-port", "", ""1],

pulse.args =["q0-drive-frame", "ql-drive-frame",
"coupler-frame", "freq", "phase"]} {

// 2. Waveform constants

%wf1 = pulse.waveform.amplitudes @waveform_1
%wf2 = pulse.waveform.amplitudes @waveform_2
%wf3 = pulse.waveform.amplitudes @waveform_3

// 3. Abply single—qubit'pulses

pulse.play(%drive@, %wf1): (!pulse.mixed_frame, !pulse.waveform
—)

pulse.play(%drivel, %wf2): (!pulse.mixed_frame, !pulse.waveform
=)

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

Munich

AN MQSS

Munich Quantum
Software Stack

// 4. Frame changes

pulse.frame_change(%drive@, %freq, %phase) : (!pulse.
<—mixed_frame, f64, f64)

pulse.frame_change(%drivel, %freq, %phase) : (!pulse.
—mixed_frame, f64, f64)

// 5. Entangling pulse
pulse.play(%coupler, %wf3)
: (!pulse.mixed_frame, !pulse.waveform)

// 6. Measurement on qubit@

wwf_r = pulse.waveform.constant @readout_pulse

pulse.play (%readout@, %wf_r) : (!pulse.mixed_frame, !pulse.
<—waveform)

%m@ = pulse.capture (%capture@): (!pulse.mixed_frame) -> il
pulse.return %m@, %mi1 : i1, il

Munich
Quantum
Valley

MQSS

Munich Quantum
Software Stack

Intermediate Representation Exchange Format
A A
4 N\ 4 A\
User Interface Device Interface
A
4 \
MQSS Client Remote Access Quantum Resource Manager and QDMI Device
Compiler Infrastructure(QRM&CI) Superconducting
Python . Dashboard € —>
c
o Python = N QDMI Device
Adapter < > 9 le > Remote < > Neutral Atoms
Interface 7
Eg: Qiskit, CUDAQ, & Quantum
Pennylane, ... i
" & niler Device QDMI Device
«—> P < Management lon Tra
Scheduler Pass Runner Interf P
HPC Access ntertace
x (QDMI)
C/C++ -
MQSS g . s
> L C/Cs+ 5] O le 5 HPC < >
Adapter - Interface O | Daemon g Passes FoMa
% DB = :
A
g-QPl, (S QDMI Device
Classical Simulator
& J AN J J
Y Y Y
Front-end Middle-end Back-end

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQSS Pulse

The Structure of the QDMI

g A consumes, Session Query Job
®\ B implements * User Management » Device Properties » Job Configuration
the interface » Access Control + Site Properties * Job Submission
* Resource Management * Operation Properties * Result Retrieval

Clients O @ O ||

Driver

? ? 2
Devices f‘\ f‘\ /4.\

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQSS Pulse

» Objects such as , , , , and are opaque pointers
» Pointers to a data structure that is not defined in the header file
hardware provider

* The actual implementation is only known to thegnﬁﬁ/ that defines the object

% They allow changing the internal representation of the object without breaking the
client code

% Opaque pointers effectively serve as type-safe IDs that are checked statically by the
compiler

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m

MQSS Pulse S AW MQss
Device Interface — Quantum Device Management Interface (QDMI) D) e

Software Stack

Opaque Pointers in QDMI

¢ QDMI_Site]

typedef struct QDMI_Site_impl_d*x QDMI_Site

A handle for a site.

An opaque pointer to an implementation of the QDMI site concept. A site is a place that can potentially hold a qubit. In case of superconducting
qubits, sites can be used synonymously with qubits. In case of neutral atoms, sites represent individual traps that can confine atoms. Those
atoms are then used as qubits. To this end, sites are generalizations of qubits that denote locations where qubits can be placed on a device. Each

implementation of the QDMI Device Interface defines the actual implementation of the concept.

A simple example of an implementation is a struct that merely contains the site ID, which can be used to identify the site.

struct QDMI_Site_impl_d {
size_t id;

};

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQ_SS Pulse < Al MQSS
Device Interface — Quantum Device Management Interface (QDMI) "D parme

Opaque Pointers in QDMI

A handle f

An opaque
qubits, sitt
atoms are

implement

A simple e

struct
size.

¢ QDMI_Site]

typedef struct QDMI_Site_impl_d*x QDMI_Site

¢ QDMI_Operation

typedef struct QDMI_Operation_impl_dx QDMI_Operation

A handle for an operation.

An opaque pointer to an implementation of the QDMI operation concept. An operation generally represents any instruction that can be executed
on a device. This includes gates, measurements, classical control flow elements, movement of qubits, pulse-level instructions, etc. Each
implementation of the QDMI Device Interface defines the actual implementation of the concept.

A simple example of an implementation is a struct that merely contains the name of the operation, which can be used to identify the operation.

struct QDMI_Operation_impl_d {
std::string name;
I

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m m 56

MQSS Pulse

Device Interface — Quantum Device Management Interface (QDMI) D) e

Munich

AN MQSS

Software Stack

Opaque Pointers in QDMI

A handle f

An opaque
qubits, sitt
atoms are

implement

A simple e

struct
size.

};

¢ QDMI_Site]

typedef struct QDMI_Site_impl_d*x QDMI_Site

¢ QDMI_Operation

typedef struct QDMI_Operation_impl_dx QDMI_Operation

A handle f

An opaque
on a devic
implement

A simple €

struct
std:

¢ QDMI_Job

typedef struct QDMI_Job_impl_dx QDMI_Job

A handle for a client-side job.

An opaque pointer to a type defined by the driver that encapsulates all information about a job submitted to a device by a client.

Remarks
Implementations of the underlying type will want to store the device handle used to create the job in the job handle to be able to access the
device when needed.

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m m 57

MQSS Pulse

Device Interface — Quantum Device Management Interface (QDMI) D) e

Munich

AN MQSS

Software Stack

Opaque Pointers in QDMI

A handle f

An opaque
qubits, sitt
atoms are

implement

A simple e

struct
size.

};

¢ QDMI_Site]

typedef struct QDMI_Site_impl_d*x QDMI_Site

¢ QDMI_Operation

typedef struct QDMI_Operation_impl_dx QDMI_Operation

A handle f

An opaque
on a devic
implement

A simple €

struct
std:

¢ QDMI_Job

typedef struct QDMI_Job_impl_dx QDMI_Job

A handle fi

An opaque

Remarl
Implem:
device\

¢ QDMI_Device_Job

typedef struct QDMI_Device_Job_impl_d* QDMI_Device_Job

A handle for a device job.

An opaque pointer to a type defined by the device that encapsulates all information about a job on a device.

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m m 58

MQSS Pulse
Device Interface — Quantum Device Management Interface (QDMI) -

tum
Software Stack

Opaque Pointers in QDMI

QDMI_PULSE_CHANNEL N
- ChannelType: e.g., DriveChannel, ReadoutChannel, ..
- Size_t: Id
- Constraints

QDMI_PULSE_PARAMETER
- Name
- Permission (Read-only, R/W)
- Range
> New potential candidates
QDMI_PULSE_SHAPE: Definition?
Predefined pulse shape:
- Name: “Gaussian”
- formula: str -> “ax”2+bx+c”
- parameters: List[QDMI_PULSE_PARAMETER]

QDMI_PULSE_GATE_IMPLEMENTATION
- Pulse program Intermediate Representation (e.g., OpenPulse)
- OR QDMI_PULSE_SHAPE with parameter values set Y,

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQSS Pulse

» QDMI relies on enumerations to define properties for , , : , and

» For each type of property, a corresponding enumeration is defined

» We do not define a separate function for each property - the value of a property is
retrieved by calling a single function with the property enumeration as an argument

» QDMI’'s enumerations allow adding new properties without breaking the interface

> If a new property is added, the corresponding enumeration can be added to the
interface without changing the existing functions

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m

60

MQSS Pulse

MQ

Device Interface — Quantum Device Management Interface (QDMI)

Enums in QDMI

QDMI_DEVICE_PROPERTY_NAME
QDMI_DEVICE_PROPERTY_VERSION
QDMI_DEVICE_PROPERTY_STATUS
QDMI_DEVICE_PROPERTY_LIBRARYVERSION
QDMI_DEVICE_PROPERTY_QUBITSNUM

QDMI_DEVICE_PROPERTY_SITES

QDMI_DEVICE_PROPERTY_OPERATIONS

o

Y

charx (string) The name of the device.

charx (string) The version of the device.
QDMI_Device_Status The status of the device.

charx (string) The implemented version of QDMI.

size_t The number of qubits in the device.

QDMI_Sitex (QDMI_Site list) The sites of the device.

The returned QDMI_Site handles may be used to query site and operation
properties. The list need not be sorted based on the
QDMI_SITE_PROPERTY_ID.

QDMI_Operationkx (QDMI_Operation list) The operations supported by

the device.

The returned QDMI_Operation handles may be used to query operation

properties.

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m m 61

MQSS Pulse
Device Interface — Quantum Device Management Interface (QDMI)

Pulse-related Enums in QDMI

QDMI_DEVICE_PROPERTY_T)
- QDMI_DEVICE_PROPERTY_PULSE_SUPPORT

- 0: No pulse support

- 1: Site level (QDMI site)

- 2: Channel (readout, global, qubit drive, coupler drive, etc.)

- QDMI_DEVICE_PROPERTY_SUPPORTED_PULSE_SHAPE_TYPE

- ©@: Standard (well-known predefined shapes, e.g., Gaussian,
parameterized, etc. - defined by a formula definition of
parameters: see above)

- 1: Arbitrary pulse shapes (these are arbitrary-shaped pulses,
not defined in a standard way, e.g., a list of pulse
amplitudes and phases; see above)

- QDMI_DEVICE_PROPERTY_AVAILABLE_PULSE_SHAPES

- List(QDMI_PULSE_SHAPE, List(QDMI_SITE or QDMI_CHANNEL)) and
the corresponding channel (e.g., drive channel can have
Gaussian, readout does not support Gaussian)

QDMI_PROGRAM_FORMAT_T
- QDMI_PROGRAM_FORMAT OPENPULSE

tum
Software Stack

> Non-exhaustive list’

- QDMI_PROGRAM_FORMAT_QIRPULSE _J

' Property types not mentioned: a) Pulse channel properties, b) Pulse operation properties, and c) Site properties.
Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.0

9.10

MQSS Pulse
Device Interface — Quantum Device Management Interface (QDMI)

Routines in QDMI

int QDMI_device_query_device_property (QDMI_Device device,

QDMI_Device_Property prop,

size t size,
void * value,
size_t * size_ret)

Query a device property.

Parameters
[in] device The device to query. Must not be NULL .
[in] prop The property to query. Must be one of the values specified for QDMI_Device_Property.

[in] size The size of the memory pointed to by value in bytes. Must be greater or equal to the size of the return type specified
for prop , except when value is NULL , in which case it is ignored.

[out] value A pointer to the memory location where the value of the property will be stored. If thisis NULL , it is ignored.
[out] size_ret The actual size of the data being queried in bytes. If thisis NULL , it is ignored.

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m m 63

MQSS Pulse
Device Interface — Quantum Device Management Interface (QDMI)

Pulse-related Routines in QDMI

int QDMI_device_query_device_property (QDMI_Device device,

QDMI_Device_Property prop,

size t size,
void * value,
size_t * size_ret)
Il First call to the function to get the size of memory required for all the sites // Second call to the function to get the QDMI_Sites

size_t size_ret;

void* value = malloc(size);
QDMI_device_query_device_property(

QDMI_device_query_device_property(

device, device,

QDMI_DEVICE_PROPERTY_SITES, /* QDMI enum value */ QDMI_DEVICE_PROPERTY_SITES, /* QDMI enum value */
NULL, size,

NULL, value,

&size ret NULL

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQSS Pulse

Munich Quantum
Software Stack

'+ Pulse-Level Support #1711

© Open

> https://tiny.badw.de/gSkYAK

6 mnfarooqi opened on Jun 5 - edited by mnfarooqi Edits v | Collaborator

What's the problem this feature will solve?

This issue focuses on extending the QDMI to include pulse level support, as discussed offline.

Exposing the pulse-level support will open up a range of new opportunities, such as calibration and enabling a pulse interface
for advanced users. It will also enable the development of software that can optimise user programs at a lower level of
abstraction.

Based on some preliminary discussions, the issue will be divided into the following sub-issues to facilitate subsequent
discussions and PRs.

Open questions:

Do the supported pulse shapes on a device change from one site/channel to another, or are they global to the device?

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m 65

Munich
Quantum
=AM MQSS
Munich Quantum
Software Stack

Intermediate Representation Exchange Format
A
4 N\
User Interface Blevice Interface
A
4 N\
MQSS Client Remote Access Quantum Resource Manager and QDMI Device
Compiler Infrastructure(QRM&.CI) Superconducting
Python - Dashboard € —>
c
MQSS 9 <« > QDMI Device
Adapter <€ O > L|) <€ > Remote < > Neutral Atoms
Interface 5 u
L
(4

Eg: Qiskit, CUDAQ, Quantum

Pennylane. .. .
ennylane @ mpiler Device QDMI Device
-— P < Management lon Tra
Scheduler Pass Runner P
Interface

3

\ 4

HPC Access
- (QDMI)
/C++
rjgss a . e
C/CH' =] HPC

Adapter < > > O 1« > < > Passes
Interface O Daemon FoM4
% DB] :

A
i r QDMI Device
> Classical Simulator
N J \ J
Y Y
Front-end Middle-end

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQSS Pulse

» The LRZ as a member of the steering committee of the QIR Alliance will lead a workstream for
creating QIR-Pulse

% We suggest creating Pulse Profile and modify the output schemas accordingly

“ The QDMI specification will adopt QIR-Pulse as the default pulse exchange format but it will
also support OpenPulse and IQM-Pulse

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m 67

MQSS Pulse < Al MQSS

Munich Quantum

Software Stack

; ModuleID = 'my_pulse'

%Qubit = type opaque
%Port = type opaque
%Waveform = type opaque
%Frame = type opaque

define void @my_pulse(float* %amps, float %freq, float %phase) #0
—{
call void @__quantum__pulse__waveform__body(%Wave*x %waveformo,
—floatx %amps)
call void @__quantum__pulse__waveform_play__body(%Port* %porte,

Prototypical extension —#Havex waveformo)
. . call void @__quantum__pulse__frame_change__body(%Port*x port@d, %
to the (kR specification >freq, %phase)
. call void @__quantum__pulse__delay__body(%Port* portd, 1024)
EEF]Eik)|Ir\g) F)l]lf;f}-lf}\/f}l call void @__quantum__qis__mz__body(%Qubit* inttoptr (i64 @ to %
<—Qubitx), %Resultx inttoptr (i64 @ to %Resultx)) #1
E;LJF)F)()rt call void @__quantum__qis__mz__body(%Qubit* inttoptr (i64 1 to %
<—>Qubitx), %Resultx inttoptr (i64 1 to %Resultx)) #1
ret void
}
declare %Waveformx @__quantum__pulse__waveform__body(float, float
%)
declare void @__quantum__pulse__waveform_play__body(%Port*, %
—Waveformx)
declare %Framex @__quantum__pulse__frame_change__body(%Portx,
<—double)

declare void @__quantum__pulse__delay__body(%Framex, int)

non

attributes #0 = { "entry_point" "output_labeling_schema
<>qir_profiles"="pulse" "required_num_ports"="1" }

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10 %ZR m M 68

MQSS Pulse
Final Thoughts

» Goal: Remove obstacles to pulse-level quantum control in HPCQC integration with the MQSS

» Pulse abstractions: Ports, frames, and waveforms supported at front-end, middle-end, and back-
end of a heterogeneous HPCQC software stack similar to MQSS

» Challenges: User interface, device interface, intermediate representation, and exchange formats
require pulse abstractions support

» Compatibility: Native pulse representation across the stack preserving HPC
scheduling/execution models

» Impact: Enables pulse-aware hybrid workloads (calibration, custom waveforms) and new
guantum-accelerated algorithms for near-term hardware

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

MQSS Pulse
Academic and Industry Leaders Supporting MQSS Pulse

|(AM [©OAQT

Jorge Echavarria | Tackling the Challenges of Adding Pulse-level Support to a Heterogeneous HPCQC Software Stack | ZKI | 2025.09.10

DLR

